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ABSTRACT

Independent component analysis (ICA) by an informa-
tion measure has seen wide applications in engineering. Dif-
ferent from traditional probability density function based in-
formation measures, a probability survival distribution based
Cauchy-Schwartz information measure for multiple variables
is proposed in this paper. Empirical estimation of survival dis-
tribution is parameter-free which is inherited by the estima-
tion of the new information measure. This measure is proved
to be a valid statistical independence measure and is adopted
as an objective function to develop an ICA algorithm which
is validated by an experiment. This work shows promising
potential regarding the use of survival distribution based in-
formation measure for ICA.

Index Terms— Probability Survival Distribution, Infor-
mation Measure, Independent Component Analysis, Blind
Signal Separation

1. INTRODUCTION

Consider the estimation of D latent variables from a N ×D
observation matrix X representing a set of D variables each
with N observations. The observations are assumed with lin-
ear but unknown combinations of the latent variables. The
estimation goal is to find an D ×D matrix W to recover the
latent signals by

Ŝ = XW, (1)

where Ŝ is the recovered signal matrix with each column be-
ing estimations for one of the D latent variables. To find the
matrix W, the method of independent component analysis (I-
CA) assumes that the latent random variables are statistically
independent and are non-Gaussian distributed (or at most one

latent Gaussian signal) [1, 2]. In other words, the task of ICA
is to recover signals by a contrast objective function based on
statistical independence.

Statistical independence can be evaluated by different s-
tatistical measures. Besides the second order statistics which
provides a weak independence measure, higher order statis-
tics such as information measures are used to provide robust
independence evaluation. For example, Shannon’s entropy
was proposed as an objective function in information maxi-
mization (InfoMax) [3] which has been an important ICA ap-
proach [2]. Another example is using Rényi’s entropy as an
ICA objective function [4]. However, numerical calculation
of these information measures is nontrivial due to the depen-
dency of underlying probability density estimation [5].

Different from the traditional probability density based in-
formation measures, several information measures defined on
probability distributions have been recently proposed: cumu-
lative residual entropy [6], generalized survival exponential
entropy [7] and survival information potential (SIP) [8]. It is
noted that empirical estimation of the distribution based SIP
is parameter-free [8, 9] and can be directly computed from
given samples [10, 11]. Inspired by this attractive parameter-
free property in estimation, we extend the work in [11] from
two random variables to multiple random variables to match
the ICA application where latent variables are generally more
than two.

2. METHODOLOGY AND ALGORITHM

2.1. Parameter-free survival distribution estimation

For a random variable X , its survival distribution (a.k.a. the
cumulative residual distribution or the tail distribution) is the
complementary of its probability cumulative distribution giv-
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en by

F̄X(x) =

∫ ∞
x

fX(u)du (2)

where fX(·) denotes the probability density function of X
and x denotes an evaluation point. Given a sample sequence
{un}, n = 1, . . . , N , the empirical survival distribution can
be obtained by [7, 8] F̄N (x) = 1

N

∑N
n=1 I(un > x), where

I(·) denotes the indicator function (I(A) is 1 if event A occurs
and is 0 otherwise).
Remark 1 In probability density function estimation, for ex-
ample by the Parzen window method [12], the estimator is
p̂X(x) = 1

N

∑N
n=1 k(x, un) where k(x, ·) denotes a kernel

function. When Gaussian kernel is adopted in this estimator,
the kernel width parameter needs to be properly set. It can be
observed that the calculation for F̄N (x) is free of parameter.

2.2. SCS-MI is a valid Statistical Independence measure

In this paper, for convenience and without loss of general-
ity, we restrict our discussions to nonnegative random vari-
ables. This would not restrict its practical applications since
data sets are mostly bounded in real-world situations and the
non-negative constraint can be satisfied by data translation.

For two random variables X and Y (both in R+), Cross
Survival Information Potential (CSIP) of the two random vari-
ables was defined in [8, 11] as

Sc(X,Y ) =

∫
R+

F̄X(x)F̄Y (x)dx. (3)

Survival Cauchy-Schwartz mutual information (SCS-MI) for
two random variables is defined to evaluate the Cauchy-
Schwartz divergence between the joint survival function
F̄(X,Y )(X,Y ) and the product of the marginal survival func-
tions F̄X(X) F̄Y (Y ) [11]:

ISCS (X;Y )
def
= − log Sc((X,Y ),XY )√

Sc((X,Y ),(X,Y ))
√

Sc(XY,XY )
, (4)

where (X,Y ) and XY denote F̄(X,Y )(X,Y ) and F̄X(X)F̄Y (Y ),
respectively. The augment terms in (4) are based on the defi-
nition shown in (3) and the nominator term is explicitly given
as an example

Sc((X,Y ),XY ) =

∫
R+

F̄(X,Y )(x, y)F̄X(x)F̄Y (y)dxdy. (5)

It was mentioned in [11] without proof that the SCS-MI
was a valid statistical independence evaluation measure. We
re-state this result in the following proposition with a proof.

Proposition 1 [11] ISCS (X;Y ) ≥ 0 and the equality holds if
and only if X and Y are mutually independent.

Proof: By substituting the survival distribution definition
(2) and the CSIP definition (3) into the arguments in (4) with
adoption of Cauchy-Schwartz inequality, the following in-
equality can be subsequently obtained as

√
Sc ((X,Y ), (X,Y ))√

Sc(XY,XY ) ≥ Sc ((X,Y ), XY ) which implies that
ISCS (X;Y ) ≥ 0. ISCS (X;Y ) = 0 holds if and only
if F̄(X,Y )(X,Y ) = F̄X(X)F̄Y (Y ) which corresponds to∫ ∫

R+
I(X > x, Y > y)[f(X,Y )(X,Y )−fX(X)fY (Y )]dXdY

= 0. Since this equality holds for any evaluation values (x, y)
and the indicator function I(·) is non-negative, it implies
f(X,Y )(X,Y ) = fX(X)fY (Y ) holds almost everywhere
which means X and Y are mutually independent. The above
interpretations are reversible and therefore the proof is com-
pleted. �

2.3. Empirical SCS-MI estimator for multiple variables

Let the capital letter with superscript Xd, d = 1, · · · , D, de-
note the d-th random variable. We first generalize the CSIP
definition (3) to D random variables by defining

Sc((X1,...,XD),(X1,...,XD)) =
∫ [

F̄(X1,...,XD)(x
1,...,xD)

]2
dx1···dxD

Sc(X1···XD,X1···XD) =
∫ [

F̄X1 (x
1)×···×F̄XD (xD)

]2
dx1···dxD

Sc((X1,...,XD),X1···XD) =∫ [
F̄(X1,...,XD)(x

1,...,xD)
]
×
[
F̄X1 (x

1)×···×F̄XD (xD)
]
dx1···dxD,

(6)

where (X1, . . . , XD) denotes the joint survival distribution
F̄(X1,...,XD)(X

1, . . . , XD) and X1 · · ·XD denotes the prod-
uct of marginal survival distributions F̄X1(X1) · · · F̄XD (XD).

With the above definitions in (6), the SCS-MI definition
(4) can be generalized to multiple (D, D ≥ 2) random vari-
ables (all in R+) as

ISCSM

(
X1; . . . ;XD

) def
=

− log
Sc((X1,...,XD),X1···XD)√

Sc((X1,...,XD),(X1,...,XD))
√

Sc(X1···XD,X1···XD)
, (7)

where subscript “SCSM” denotes the SCS-MI for multiple
variables.

Proposition 2 ISCSM

(
X1; . . . ;XD

)
≥ 0 and the equality

holds if and only if X1, . . . , XD are mutually independent.

The proof is similar to the one for Proposition 1 and the
details are omitted here for brevity. By Proposition 2, SCS-MI
can therefore be used for independence evaluation. However,
empirical estimation of SCS-MI depends on the estimation of
the CSIP augments therein. Here we present only the empir-
ical estimator for the numerator part in (7) for brevity, and
the estimators for the denominator can be obtained in a sim-
ilar routine. Assume there are N samples for each of the D
random variables, we get
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Sc

(
(X

1
, . . . , X

D
), X

1 · · ·XD
)

=

∫ [
F̄(X1,...,XD)(x

1
, . . . , x

D
)
]
×
[
F̄X1 (x

1
)× · · · × F̄XD (x

D
)
]
dx

1 · · · dxD

=

∫ [ 1

N

N∑
n=1

I
(
(X

1
n, . . . , X

D
n ) >

(
x
1
, . . . , x

D
)) ]
×

[ 1

N

N∑
α1=1

I
(
X

1
α1

> x
1
) ]
× · · · ×

[ 1

N

N∑
αD=1

I
(
X

D
αD

> x
D
) ]

dx
1 · · · dxD

=
1

ND+1

∫ [ N∑
n,α1,...,αD=1

I
(
(X

1
n, . . . , X

D
n ) >

(
x
1
, . . . , x

D
))
×

I
(
X

1
α1

> x
1
)
× · · · × I

(
X

D
αD

> x
D
) ]

dx
1 · · · dxD

=
1

ND+1

N∑
n,α1,...,αD=1

∫ [
I
(
X

1
n > x

1
)
× I
(
X

1
α1

> x
1
)

× · · · × I
(
X

D
n > x

D
)
× I
(
X

D
αD

> x
D
) ]

dx
1 · · · dxD

=
1

ND+1

N∑
n,α1,...,αD=1

[ ∫
I
(
min(X

1
n, X

1
α1

) > x
1
)
dx

1]
× · · · ×

[ ∫
I
(
min(X

D
n , X

D
αD

) > x
D
)
dx

D]
=

1

ND+1

N∑
n,α1,...,αD=1

[
min(X

1
n, X

1
α1

)× · · · ×min(X
D
n , X

D
αD

)
]
,

where min(Xd
n, X

d
α1
) denotes the minimum function return-

ing the minimal value of Xd
n and Xd

α1
. Here, Xd

n denotes the
n-th sample of the random variable Xd.

Once the estimators for the CSIP augments in (7) are ob-
tained, the SCS-MI empirical estimator of (7) can be subse-
quently obtained by using the CSIP estimators and we finally
get

ÎSCSM

(
X

1
; . . . ;X

D
)

=

− log

∑N
n,α1,α2,...,αD=1 min(X1

n, X
1
α1

)× · · · ×min(XD
n , XD

αD
)√∑N

n,m=1

(∏D
d=1 min(Xd

n, X
d
m)
)√∏D

d=1

(∑N
n,m=1 min(Xd

n, X
d
m)
) .

(8)

Remark 2 It is noted that the SCS-MI empirical estimator (8)
provides a means for statistical independence evaluation in
terms of survival distribution with no free parameter but just
the observed samples.

2.4. Proposed ICA algorithm based on SCS-MI estimator

As stated in Proposition 2, the SCS-MI is a valid statistical
independence measure. Therefore, it can be used as an ob-
jective function and the optimal matrix W∗ for ICA in (1) is
obtained by

W∗ = argmin
W

ÎSCSM

(
Ŝ1; . . . ; ŜD

)
, (9)

where Ŝ1, . . . , ŜD denote the D estimated variables.
In order to get the optimal solution in (9), an orthogonal

constraint WTW = I can be used to simplify the optimiza-
tion procedure. Here, we use the method of Givens’ rotation

[13, 14] to impose an orthogonal constraint on W by products
of D(D − 1)/2 parameterized rotations based on

W =
D−1∏
i=1

D∏
j=i+1

Gij (10)

where Gij is the D ×D identity matrix with its (i, j)-th ele-
ment determined by θij given by[

Gij(i, i) Gij(i, j)
Gij(j, i) Gij(j, j)

]
=

[
cos(θij) sin(θij)
− sin(θij) cos(θij)

]
with θij being the ij-th rotation angle parameter. Note that
the D(D − 1)/2 angle parameters completely determine the
orthogonal matrix W [13].

Here, we use a gradient based optimization procedure to
obtain the solution in (9). The SCS-MI in (9) (see (8)) is
firstly abbreviated as

ÎSCSM

(
Ŝ

1
; . . . ; Ŝ

D
)

=
1

2
log Sc

(
(Ŝ

1
, . . . , Ŝ

D
), (Ŝ

1
, . . . , Ŝ

D
)
)

+
1

2
logSc((Ŝ

1 · · · ŜD
), (Ŝ

1 · · · ŜD
))

− logSc

(
(Ŝ

1
, . . . , Ŝ

D
), (Ŝ

1 · · · ŜD
)
)

=
1

2
log Ia +

1

2
log Ib − log Ic

where the logarithmic arguments are elliptically represented.
With these abbreviations, the gradient of the SCS-MI is writ-
ten as

∂

∂θij
ÎSCSM =

D∑
i,j=1

∂ÎSCSM

∂wij

∂wij

∂θij

=

D∑
i,j=1

(
1

2Ia

∂Ia

∂wij

+
1

2Ib

∂Ib

∂wij

−
1

Ic

∂Ic

∂wij

)D−1∏
u=1

D∏
v=u+1

G̃uv


ij

(11)

where G̃uv = ∂Guv

∂θuv
when u = i and v = j, and G̃uv = Guv

otherwise. The derivative of the matrix Guv with respect to
the angle parameter θuv is given by

∂

∂θuv

[
Guv(u, u) Guv(u, v)
Guv(v, u) Guv(v, v)

]
=

[
− sin(θuv) cos(θuv)
− cos(θuv) − sin(θuv)

]
. (12)

By some strait forward calculations, the partial derivatives
in (11) can be obtained as

∂Ia

∂wij

=

N∑
u,v=1

( ∂Ad

∂wdj

)
uv

◦
D⊙

k=1,k ̸=d

(Ak)uv

 (13)

∂Ib

∂wij

=

 N∑
u,v=1

(
∂Ad

∂wdj

)
uv

× D∏
k=1,k ̸=d

 N∑
u,v=1

(Ak)uv

 (14)

∂Ic

∂wij

=

N∑
u,v=1

( ∂Ad

∂wdj

)
uv

◦

 D⊙
k=1,k ̸=d

(
N∑

v=1

(Ak)uv

)
× 11×N


(15)

where “◦” denotes the Hadamard product, “
⊙

” denotes series
of the Hadamard products and 11×N is an N -length vector
with all elements being 1. Here we use two abbreviation-
s to denote matrices with their respective (u, v)-th element.
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Algorithm 1: SCS-MI based ICA Algorithm
Input: {x̃d

n}, n = 1 . . . N, d = 1, . . . , D

Output: W∗, Ŝ
1 Initialization
2 η = 10−2, tol = 10−4, t = 2×D X← h

(
{x̃d

n}
)

∗ ; // h(·)
denotes whitening

3 θ = [. . . θu . . . ] = [1, . . . , 1]T ,u = 1, . . . , D(D − 1)/2 ;
// angle parameters

4 while tol and iteration k are within valid range † do

5 θ(k+1)
u = θ(k)

u − η∇θu ÎSCSM

(
Ŝ1; . . . ; ŜD

)‡
;

6 W(k) ←
∏D−1

i=1

∏D
j=i+1 Gij(θ) ; // ref. (10)

7 Ŝ(k) ← X×W(k) ; // ref. (1)
8 tol← ÎSCSM(Ŝ(k) + t) ; // ref. (8)
9 θ(k)

u = θ(k+1)
u ;

10 return W∗, (Ŝ = XW∗) ; // ref. (1)
11

12

∗ : observations are firstly whitened to ensure E[XTX] = I where E[·]
denotes the expectation operator, ref. [15, 3].

† : tolerance tol and iterations k can be set when running an application
‡ : ref. (9), (11), (12), (13), (14) and (15).

With the above results (11)-(15), the SCS-MI gradient is ob-
tained and subsequently used for a gradient based ICA search
as shown in Algorithm 1.

Algorithm 1 is a demo to show the effectiveness of us-
ing the CSIP esitmator (8) for independence evaluation. The
computational complexity in Algorithm 1 is dominated by
calculating ÎSCSM(Ŝ

(k) + t) at about O(3 × (D + 1) × N2)
which could be large with increment of sample number N
and iterations. We leave the development of a computational-
ly more efficient algorithm as our future work.

3. EXPERIMENT

In this experiment, the proposed ICA Algorithm 1 (SCS-MI)
is compared with several existing well-known ICA techniques
namely, the method of Joint Approximate Diagonalization of
the Eigen-matrices (JADE) [16], the Algorithm for Multiple
Unknown Source Extraction (AMUSE) [17], the method em-
ploying EigenValue Decomposition (EVD) [18], the Fixed-
Point ICA method (FPICA) [5], the Equivariant Robust ICA
(ERICA) [19], the Thin algorithm for ICA (ThinICA) [19]
and the Unbiased quasi Newton algorithm for ICA (UNICA)
[20]. Here, all the selected ICA methods deal with the sam-
ples in the input data space and we exclude those methods in-
volving kernel mapping of input data (such as the kernel ICA
[21] and the Hilbert-Schmidt independence criterion [22]).

Amari-index is used for de-mixing matrix quality assess-
ment which was defined in [23] as

Amari-index(W∗
,M) =

1

2D

D∑
i=1

(∑D
j=1 |rij |

maxj |rij |
− 1

)
+

1

2D

D∑
j=1

(∑D
i=1 |rij |

maxi |rij |
− 1

)
(16)

where rij = (W∗×M)ij and W∗ denotes the recovered de-
mixing matrix. The Amari-index is equal to zero when two
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Fig. 1. Performance index comparison among algorithms.
The experimental results implemented on the Instrument data
set and the Hello data set are shown in (a) and (b), respec-
tively. The number of samples in experiments is varying in
[400, 1100] (denoted in x-axes) with the samples randomly s-
elected from a region of the data sets. The mixing matrix is a
2×2 matrix with elements randomly selected from the region
of (0, 1). The performance of each method is obtained from
50 separate runs.

matrices represent the same components.
Two real-world data sets are adopted in our experiment:

the first data set includes recordings of two musical instru-
ments (violin and guitar), and the second data set includes
recordings of two speakers saying the English word “hello”
[23]. All compared algorithms are tested on the two data sets
and the experimental results are shown in Fig. 3 (a) and (b),
respectively. It can be observed that the performance of the
proposed SCS-MI method is among the best of all the com-
peting methods in this experiment.

4. CONCLUSION

The newly defined multiple variable SCS-MI (7) is a gener-
alization of the two variable SCS-MI (4). The SCS-MI was
proved to be a valid statistical independence measure and a
parameter-free SCS-MI estimator was given in (8). Based
on the SCS-MI estimator, a novel independent component
analysis algorithm was proposed and was validated by an
experiment. Comparison with several well-known ICA meth-
ods showed relatively good performance of the developed
method. This work shows promising potential regarding the
use of survival distribution in ICA.
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