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ABSTRACT

We propose an online tensor subspace tracking algorithm
based on the CP decomposition exploiting the recursive least
squares (RLS), dubbed OnLine Low-rank Subspace tracking
by TEnsor CP Decomposition (OLSTEC). Numerical evalua-
tions show that the proposed OLSTEC algorithm gives faster
convergence per iteration comparing with the state-of-the-art
online algorithms.

Index Terms— Online subspace tracking, Tensor com-
pletion, CP decomposition, Recursive least squares

1. INTRODUCTION

The problem of tensor subspace tacking of multidimensional
data, which are naturally represented by a tensor, has been
studied intensively in recent years. The usual structural as-
sumption on a tensor is that the tensor has low-rank in every
mode. The popular convex relaxation [1, 2, 3] approach min-
imizes the sum of the nuclear norms of the unfolding matri-
ces of the tensor by extending the successful results in matrix
completion problem [4] under theoretical performance guar-
antees. However, due to the limited scalability towards large-
scale data of convex relaxations, the fixed-rank non-convex
approach with tensor decomposition [5, 6] has gained big at-
tentions recently because of superior performance in practice
in despite of local minima. This also comes from the success
of matrix cases [7, 8, 9]. Considering that the data are sequen-
tially acquired, or the underlying low-rank structure changes
over time, online subspace tracking and estimation is essen-
tial to avoid expensive repetitive computations of batch-based
algorithms.

With regard to matrix-based online tracking, a repre-
sentative research is the projection approximation subspace
tracking (PAST) [10]. GROUSE [11] recently proposes an
incremental gradient descent algorithm on the Grassman-
nian G(d, n), the space of all d-dimensional subspace of
Rn [12, 13]. The algorithm minimizes `2-norm cost func-
tion. GRASTA[14] enhances robustness against outliers
by exploiting `1-norm cost function. PETRELS [15] cal-
culates the underlying subspace via a discounted recursive
process for each row of the subspace matrix in parallel.

On the other hand, as for tensor-based tracking, Nion and
Sidiropoulos propose an adaptive algorithm to obtain the CP
(CANDECOMP/PARAFAC) decompositions [16]. Yu et al.
also propose an accelerated online tensor learning algorithm
(ALTO) based on the Tucker decomposition [17]. However,
they do not deal with missing data presence. Mardani et al.
propose an online imputation algorithm based on the CP de-
composition under the presence of missing data [18]. This
considers the stochastic gradient descent (SGD) for for large-
scale data. However, considering the situations where the
subspace changes dramatically and the processing speed is
enough faster than data acquiring speed, a faster convergence
algorithm per iteration to track this change is crucial.

This paper presents a new online tensor tracking algo-
rithm, dubbed OLSTEC, for the partially observed high-
dimensional data stream corrupted by noise. We focus on the
fixed-rank tensor completion algorithm with a second-order
stochastic gradient descent based on the CP decomposition
exploiting the recursive least squares (RLS). The rest of pa-
per is organized as follows. Section 2 formulates the problem
of online subspace tracking and Section 3 proposes the new
algorithm. Numerical evaluations are performed in Section 4,
after which we conclude in Section 5.

2. PROBLEM FORMULATION

This paper addresses the problem of low-rank tensor comple-
tion in an online manner when the rank is a priori known or es-
timated. Without loss of generality, we focus on 3-order ten-
sors of which one order increases over time. In other words,
we address Y ∈ RL×W×T of which 3-rd order increases in-
finitely. Assuming Yi1,i2,i3 are only known for some indices
(i1, i2, i3) ∈ Ω, where Ω is a subset of the complete set of
indices (i1, i2, i3), a general batch-based fixed-rank tensor
completion problem is formulated as

min
X∈RL×W×T

1

2
‖PΩ(X )− PΩ(Y)‖2F

subject to rank(X ) = R,
(1)

where the operator PΩ(X )i1,i2,i3 = Xi1,i2,i3 if (i1, i2, i3) ∈
Ω and PΩ(X )i1,i2,i3 = 0 otherwise and (with a slight abuse
of notation) ‖ · ‖F is the Frobenius norm. rank(X ) is the
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rank of X (see [19] for a detailed discussion on tensor rank).
R� {L,W, T} enforces a low-rank structure. Hereafter, the
t-th slice in the third mode of Y , i.e. Y:,:,t and its value at
(l, w), i.e., Yl,w,t, are denoted as Yt and [Yt]l,w, respectively.

The CP decomposition that we address in this paper
decomposes a tensor into a sum of component rank-one ten-
sors [19], as X ≈

∑R
r=1 ar ◦ cr ◦ br, where ar ∈ RL,

br ∈ RT , and cr ∈ RW . The symbol ◦ represents the
vector outer product. The factor matrices refer to the com-
bination of the vectors from the rank-one components, i.e.,
A = [a1,a2, · · ·aR] ∈ RL×R and likewise for B and C.
It should be noted that A, B and C can be also repre-
sented by row vectors, i.e., horizontal vectors, for exam-
ple, A = [(a1)T , · · · , (aL)T ]T , where al ∈ RR. Thus,
Yt = Adiag(bt)CT =

∑R
r=1 b

t(r)arc
T
r . Then, the problem

(1) is reformulated with `2 regularizers as [18]

min
A,B,C

1

2
‖PΩ(Y)− PΩ(X )‖2F + µ(‖A‖2F + ‖B‖2F + ‖C‖2F )

subject to Xτ = Adiag(bτ )CT for τ = 1, ..., t. (2)

where µ is a regularizer parameter. Consequently, considering
the situation where the partially observed tensor slice Ωτ~Yτ
is acquired sequentially over time, we estimate {A,B,C} by
minimizing the exponentially weighted least squares;

min
A,B,C

1

2

t∑
τ=1

λt−τ
[
‖Ωτ ~

[
Yτ − Adiag(bτ )CT

]
‖2F

+ µ̄(‖A‖2F + ‖C‖2F ) + µ[τ ]‖bτ‖22
]
, (3)

where µ̄ = µ[τ ]/
∑t
τ=1 λ

t−τ , and 0 < λ ≤ 1 is the so-called
forgetting parameter. λ = 1 case is equivalent to the batch-
based problem (2). The symbol ~ denotes the Hadamard
Product, which is the element-wise product.

3. PROPOSED TENSOR TRACKING: OLSTEC

The unknown variables in (3) are A,C, and b. Since A and
C are non-convex set, this function is non-convex. The pro-
posed OLSTEC algorithm, as summarized by Algorithm 1,
alternates between a least-square estimation of b[t] for fixed
A[t−1] and C[t−1], and a second order stochastic gradient
step using the RLS on A[t] and C[t] for fixed b[t]. It should
be noted that W[t] with the square bracket indicates the cal-
culated W after performing t-times updates.

3.1. Calculation of b[t]

The estimate b[t] of bt is obtained in a closed form by least-
squares by denoting gl,w[t] = al[t−1] ~ cw[t−1] ∈ RR as

min
bt∈RR

1

2

[ L∑
l=1

W∑
w=1

(
[Ωt]l,w

(
[Yt]l,w−(gl,w[t])T bt

))2
+µ[t]‖bt‖22

]

Algorithm 1 OLSTEC algorithm
Require: {Yt and Ωt}∞t=1, λ, µ

1: Initialize {A[0], b[0], C[0]}, Y[0] = 0, (RAl[0])−1 =
(RCw[0])−1 = γIR, γ > 0.

2: for t = 1, 2, · · · do
3: Calculate b[t] Equation (4)
4: Xt = A[t−1]diag(bt)(C[t−1])T

5: for l = 1, 2, · · · , L do
6: Calculate RAl[t] Equation (7)
7: Calculate al[t] Equation (8)
8: end for
9: for w = 1, 2, · · · ,W do

10: Calculate RCl[t] Equation (10)
11: Calculate cw[t] Equation (9)
12: end for
13: end for
14: return Xt = A[t]diag(b[t])(C[t])T

Defining F [t] as the inner objective to be minimized, we ob-
tain b[t] since b[t] satisfies ∂F [t]/∂b[t] = 0 as

b[t] =

[
µ[t]IR +

L∑
l=1

W∑
w=1

Ω[t]l,wgl,w[t](gl,w[t])T
]−1

[ L∑
l=1

W∑
w=1

Ω[t]l,wY[t]l,wgl,w[t]

]
. (4)

3.2. Calculation of A[t] and C[t] based on RLS

The calculation of C[t] uses A[t−1], and the calculation of A[t]
uses C[t−1]. This paper addresses a second-order stochastic
gradient based on the RLS with forgetting parameters, which
has been widely used in tracking of time varying parameters
in many fields. Its computation is efficient since we update the
estimates recursively every time new data becomes available.

As for A[t], the problem (3) is reformulated as

min
A∈RL×R

1

2

t∑
τ

λt−τ
[
‖Ωτ ~

[
Yτ −

Adiag(b[τ ])C[τ−1]T
]
‖2F
]

+
µ[t]

2
‖A‖2F . (5)

The objective function in (5) decomposes into a parallel
set of smaller problems, one for each row of A, as

al[t] = arg min
al∈RR

1

2

t∑
τ=1

[
λt−τ

W∑
w=1

[Ωτ ]l,w ([Yτ ]l,w

−(al)Tdiag(b[τ ])cw[τ−1]
)2]

+
µ[t]

2
‖al‖22.

Here, denoting diag(b[τ ])cw[τ−1] as αw[τ ] ∈ RR, al[t]
is obtained by setting the derivative to zero as

RAl[t]al[t] = sl[t], (6)
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where RAl[t] ∈ RR×R and sl[t] ∈ RR are defined as

RAl[t] =

t∑
τ=1

[ W∑
w=1

λt−τ [Ωτ ]l,wαw[τ ]αw[τ ]T
]

+ µ[t]IR

sl[t] =

t∑
τ=1

[ W∑
w=1

λt−τ [Ωτ ]l,w[Yτ ]l,wαw[τ ]

]
.

Here, RAl[t] is transformed by separating t-th term as

RAl[t] = λRAl[t−1] +

W∑
w=1

[Ωt]l,wαw[t](αw[t])T

+(µ[t]− λµ[t−1])IR. (7)

Likewise, sl[t] is obtained as sl[t] = λsl[t−1]+
∑W
w=1[Ωt]l,w

[Yt]l,wαw[t]. Thus, from (6), we reformulate RAl[t] as

RAl[t]al[t] = RAl[t]al[t−1]− (µ[t]− λµ[t−1])al[t−1]

+

W∑
w=1

[Ωt]l,w
(
[Yt]l,w−αw[t]Tal[t−1]

)
αw[t].

Finally, al[t] is obtained as

al[t] = al[t−1]− (µ[t]− λµ[t−1])(RAl[t])−1al[t−1] +
W∑
w=1

[Ωt]l,w
(
[Yt]l,w−(αw[t])Tal[t−1]

)
(RAl[t])−1αw[t]. (8)

Similarly, cw[t] for C[t] can be obtained as

cw[t] = cw[t−1]− (µ[t]− λµ[t−1])(RCw[t])−1cw[t−1] +
L∑
l=1

[Ωt]l,w([Yt]l,w−βw[t]cw[t−1])(RCw[t])−1(βw[t])T, (9)

where βw[τ ] ∈ R1×R is (al[τ ])Tdiag(b[τ ]), and RCw[t] is
defined as

RCw[t] = λRCw[t−1] +

L∑
l=1

[Ωt]l,wβw[t]Tβw[t]

+(µ[t]− λµ[t−1])IR. (10)

3.3. Complexity and memory consumption

With respect to computational complexity per iteration, OL-
STEC requires O(|Ωt|R2 +LR3) because of O(|Ωt|R2) for
b[t] in (4) and O(LR3) for the inversion of RAl and RCw
in (8) and (9), respectively. As for memory consumption,
O((L+W )R2) is required for RA[t] and RC[t], respectively.

4. NUMERICAL EVALUATIONS

We show numerical comparisons of the OLSTEC algorithm1

with state-of-the-art algorithms for synthetic and real-world
1Matlab source code is available at http://www.kasailab.com/

research/olstec.

datasets. All the following experiments are done on a PC with
3.0 GHz Intel Core i7 CPU and 16 GB RAM. We first eval-
uates the performance of our proposed algorithm using syn-
thetic dataset with the state-of-the-art online algorithm pro-
posed in [18], termed as “TeCPSGD” algorithm in this paper.
We first generate a low R-rank tensor Y ∈ RL×W×T where
its factor matrices are generated with i.i.d standard Gaussian
N (0, 1) entries, and Gaussian noise with i.i.dN (0, ε2) entries
are added. We set L = W = {100, 200, 300}, T = 1000,
R = {5, 10, 15}, and the noise level ε = 10−3. The ob-
servation ratio, ρ, is {0.1, 0.05}. µ[t] = 10−9 and λ =
0.88 are configured in the proposed algorithm. It should be
noted that we implement TeCPSGD with our configured pa-
rameters because the source code of TeCPSGD is not avail-
able. Figure 1 shows the running-averaging estimation error
1
T

∑T
τ=1 ‖Xτ − Yτ‖2F /‖Yτ‖2F for each observation ratio ρ,

where five runs are performed independently, and the results
show the average with standard deviations. From these re-
sults, the proposed OLSTEC algorithm shows much lower es-
timation error, especially when observation ratios are lower.
In addition, the standard derivations are also smaller, thus,
the convergence property of the proposed algorithm is stabler
than that of TeCPSGD. Figure 2 (a) and (b) show the normal-
ized residual error ‖Xt−Yt‖2F /‖Yt‖2F when the observation
ratios are 0.1 and 0.05, respectively. Additionally, we show,
as reference, the result of CP-WOPT [20], the state-of-the-art
batch algorithm. The relative change in function value toler-
ance is set to 10−9 and the maximum iterations is 300 for CP-
WOPT. Our proposed algorithm gives superior convergence
performances than those of TeCPSGD.
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Fig. 1. Running-averaging error in synthetic dataset.

We also evaluate a scenario where a subspace of rank
changes abruptly periodically. Four rank-5 tensors of 100 ×
100 × 250 are concatenated in series at the 3-rd order di-
rection. Figure 2(c) shows the normalized residual error at
each iteration. This shows that the subspace tracking behavior
of the OLSTEC algorithm gives a superior performance than
that of TeCPSGD which cannot recover correct subspaces af-
ter abrupt changes.

Next, we evaluate the tracking performances using surveil-
lance video as a real-world dataset. Although each video
frame does not have low-rank structure and a tensor-based
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(a) Stationary subspace (ρ = 0.1)
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(b) Stationary subspace (ρ = 0.05)
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(c) Dynamic subspace (ρ = 0.1)

Fig. 2. The normalized estimation error in synthetic dataset.
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(a) Stationary background (ρ = 0.1)
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Fig. 3. The normalized estimation error in real-world dataset.

approach basically has a disadvantage for the approximation
of its underlying subspace, this experiments demonstrates the
superior tacking performance of OLSTEC. We compare OL-
STEC with TeCPSGD as well as the matrix-based algorithms
including GROUSE [11], GRASTA [14], and PETRELS
[15]. We use Matlab codes provided by the respective au-
thors except for TeCPSGD with our configured parameters.
“Airport Hall” dataset of size 288 × 352 with 500 frames
is used. Moreover, for fair comparison between tensor and
matrix-based algorithms, the rank is set to 20 and 10 for the
former, i.e., OLSTEC and TeCPSGD, and for the latter, re-
spectively. Still, the tensor-based algorithms has much less
free parameters than those of the matrix-based algorithms.
This experiment also considers two scenarios. The first sepa-
rates foreground objects with static background and moving
objects in the foreground. Figure 3 (a) shows the superior
performance of OLSTEC against other algorithms. Fur-
thermore, we examine the performances against a dynamic
moving background as the second scenario. The input video
is created virtually by moving cropped partial image from its
original entire frame image of video. The cropping window
with 288 × 200 moves from the leftmost partial image to the
rightmost, then returns to the leftmost image after stopping

a certain period of time. The generated video includes right-
panning video from 38-th to 113-th frame and from 342-th to
417-th frame, and left-panning video from 190-th to 265-th
frame. Figure 3(b) shows how OLSTEC can quickly adapt to
the changed background. Figure 3(c) shows the reconstructed
(i.e., completed) image at 110-th frame of OLSTEC gives
better quality than those of others.

5. CONCLUSION AND FUTURE WORK

We have proposed a new online tensor subspace tracking al-
gorithm, dubbed OLSTEC, for the partially observed high-
dimensional data stream corrupted by noise. Especially, we
addressed a second-order stochastic gradient descent based
on the recursive least squares to achieve faster convergence of
subspace tracking. Numerical comparisons suggest that our
proposed algorithm has superior performances on synthetic
as well as real-world datasets. As a future research direction,
we will investigate the ways of the Tucker decomposition.
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