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ABSTRACT
For the matrix/tensor completion problem with very high
missing ratio, the standard local (e.g., patch, probabilistic,
and smoothness) and global (e.g., low-rank) structure-based
methods do not work well. To address this issue, we proposed
to use local and global data structures at the same time by ap-
plying a novel functional smooth PARAFAC decomposition
model for the tensor completion. This decomposition model
is constructed as a sum of the outer product of functional
smooth component vectors, which are represented by linear
combinations of smooth basis functions. A new algorithm
was developed by applying greedy deflation and smooth
rank-one tensor decomposition. Our extensive experiments
demonstrated the high performance and advantages of our
algorithm in comparison to existing state-of-the-art methods.

Index Terms— Tensor completion, greedy deflation,
smooth component analysis, cosine basis, B-spline basis

1. INTRODUCTION

Tensor is a general name for multi-dimensional arrays such
as vectors, matrices, and higher order ones. When we have
some incomplete data tensor with missing elements, a ‘com-
pletion’ technique that estimates the missing values by using
available values is often used for the recovery or prediction.
Image inpainting [1] and recommender system [2] are typical
applications of matrix/tensor completion.

In a technical sense, completion is impossible without any
assumptions about the relationships between available ele-
ments and missing elements. Low-rank-based matrix/tensor
completion has been extensively studied, and efficient algo-
rithms have been developed [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14]. However, when the ratio of missing elements is very
high and the data include some noise, using only low-rank as-
sumption is not sufficient to achieve a good performance. In
recent years, completion techniques using the low-rank tensor
decomposition models with some additional constraints have
been proposed to improve performance [15, 16, 17].

Chen et al. [15] proposed a tensor completion algorithm
based on the Tucker decomposition model by minimizing the
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squared errors, nuclear norm of factor matrices, and regular-
ization terms for factor prior. Zhao et al. [16] proposed a
tensor completion algorithm based on a PARAFAC decom-
position (PD) model based on a Bayesian framework with
mixture prior assumption for the factor matrices. The prior
assumptions in both methods are similar, which consider the
similarity between the individual component vectors in factor
matrices. Both methods succeeded in recovering incomplete
visual data with relatively high missing ratio in their experi-
ments.

In this paper, we assume that the original tensor is decom-
posed by the PD model, and its individual component vectors
are smooth and represented by linear combinations of a small
number of basis functions. In our model, the input data ten-
sor is reconstructed as the sum of several rank-one tensors,
which are given by the outer product of smooth component
vectors. Since the visual data are locally smooth, the smooth-
ness constraint is really important and helpful for completion
in some specific cases. Furthermore, we enforce different
levels of smoothness for the different rank-one tensors adap-
tively, which allows us to enforce strong smoothness into the
background and weaker smoothness into the foreground. To
implement our model in practice, we employed a greedy de-
flation approach for the optimization algorithm and applied
discrete cosine transform basis and B-spline basis to the basis
functions.

2. PROPOSED METHOD

2.1. Functional PARAFAC decomposition model

Basically, the optimization problem of tensor completion can
be solved by minimizing ||PΩ ~ (X − Z)||2F , where X ∈
RI1×I2×···×IN is an input data tensor, Z ∈ RI1×I2×···×IN is
a parametric model, and PΩ ∈ {0, 1}I1×I2×···×IN represents
missing and available elements by 0 and 1, respectively. We
denote XΩ := PΩ ~X and ZΩ := PΩ ~Z in some cases,
where ~ is the Hadamard product. The functional PARAFAC
decomposition (FPD) model is given by

Z =

R∑
r=1

gru
(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r , (1)
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where u(n)
r = Φ(n)w

(n)
r ∈ RIn are the smooth component

vectors, Φ(n) = [φ
(n)
1 ,φ

(n)
2 , ...,φ

(n)
Ln

] ∈ RIn×Ln are the ba-

sis functions, ||u(n)
r ||2 = ||φ(n)

l ||2 = 1, and w(n)
r ∈ RLn

are the weight parameter vectors. We denote unit rank-one
tensors by Ur := u

(1)
r ◦ u(2)

r ◦ · · · ◦ u(N)
r .

2.2. Optimization problem

Let us consider the following novel optimization problem:

min
gr,w

(n)
r

1

2
||XΩ −ZΩ||2F +

R∑
r=1

g2
r

2

N∑
n=1

w(n)T
r Λ(n)w(n)

r ,

(2)

s.t. Z =

R∑
r=1

grUr, ||Φ(n)w(n)
r ||2 = 1,

where Λ(n) ∈ RLn×Ln is a suitably designed constraint
matrix. The concept of optimization strategy is to fit the
FPC model to the data by minimizing the squared error with
smoothing regularization terms w(n)T

r Λ(n)w
(n)
r . The chal-

lenge in this optimization problem is to find the optimal
number of components R. Assuming a decomposition of
observed tensor X = Z + E exists and noise tensor E is
independent from the FPD model, we can estimate R as

R̂ = argmin
R

f(R) := ||XΩ −ZΩ||2F . (3)

Since we generally have f(k + 1) ≤ f(k) for any natural
number k, if f(k)−f(k+1) ≤ ε for some small enough value
of ε, then such k is an approximately appropriate value for R̂.
Thus, we propose a greedy method in Algorithm 1. In this
algorithm, we iterate to solve the suboptimization problem as
follows:

min
g,w(n)

1

2
||EΩ − gUΩ||2F +

g2

2

N∑
n=1

w(n)TΛw(n), (4)

s.t. ||Φ(n)w(n)|| = 1, ∀n ∈ {1, 2, ..., N}.

while deflating the residual tensor by E ← E − gU .

2.3. Suboptimization algorithm

In this section, we explain how to solve the rank-one FPD
problem (4) in Algorithm 1. The error term of the objective
function in (4) can be transformed to the following forms:

1

2
||PΩ ~ (E − gΦ(1)w(1) ◦Φ(n)w(2) ◦ · · · ◦Φ(N)w(N))||2F

=
1

2
||EΩ||2F − g〈EΩ,U〉+

1

2
g2〈PΩ,U ~ U〉 (5)

=
1

2
||EΩ||2F − gw(n)TΦ(n)T [EΩ](n)v

(n) (6)

+
g2

2
w(n)TΦ(n)T diag

(
[PΩ](n)(v

(n) ~ v(n))
)

Φ(n)w(n),

Algorithm 1 Functional PARAFAC tensor Completion (FPC)

1: Input: X , Ω, ε, Rmax, Φ(n), Λ(n)

2: EΩ ← XΩ;
3: Z ← 0;
4: f(0)← ||EΩ||2F ;
5: for k = 1, 2, ..., Rmax do
6: Obtain gU by solving the rank-one FPD optimization

(4):
7: E ← E − gU ;
8: Z ← Z + gU ;
9: f(k)← ||EΩ||2F ;

10: if f(k − 1)− f(k) ≤ ε, then break; endif
11: end for
12: Output: Z

where EΩ := PΩ ~E , v(n) := u(1)⊗u(2)⊗· · ·⊗u(n−1)⊗
u(n+1) ⊗ · · · ⊗ u(N) and ⊗ denotes the Kronecker product.
Note that (5) and (6) are quadratic functions with respect to g
and w(n).

Update rules for g and w(n) are derived in Sections 2.3.1
and 2.3.2, and the new optimization scheme is summarized in
Algorithm 2.

2.3.1. Update rule of g

From (4) and (5), the optimization problem for scalar g is an
unconstrained quadratic problem. Thus, the update rule can
be given as

g ← 〈EΩ,U〉
〈PΩ,U ~ U〉+

∑N
n=1w

(n)TΛw(n)
; (7)

2.3.2. Update rule of w(n)

To update w(n), we formulate the following optimization
problem:

min
w∈RLn

h(w) :=
1

2
wTH(n)w −wT c(n),

s.t. ||Φ(n)w|| = 1, (8)

whereH(n) := g2
(
Φ(n)T diag

(
[PΩ](n)(v

(n) ~ v(n))
)
Φ(n)+

Λ
)
, and c(n) := gΦ(n)T [EΩ](n)v

(n). Please note that the
problem is symmetric with respect to w(n) for any n, and
therefore it can be solved by any technique for the unit-
norm constrained quadratic optimization. By employing the
gradient-based coefficient normalization method [18], we can
solve (8) by applying the following update rules:

wk+1 ← wk − α(H(n)wk − c(n)); (9)

wk+1 ← wk+1/||Φ(n)wk+1||2; (10)

where α > 0 is a step-size parameter that is selected so that
h(wk) ≤ h(wk+1). We repeat iterations (9) and (10) until
h(wk)− h(wk+1) ≤ ε.
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Algorithm 2 Rank-One Functional PARAFAC Decomposi-
tion (FPD)

1: Input: E , Ω, ε, Φ(n), Λ(n)

2: Initialize w(n) for n = 1, 2, ..., N , randomly; k = 0;
3: Normalize w(n) as unit vectors; calculate g by (7);
4: y(1)← 1

2 ||EΩ − gU ||2F + 1
2g

2
∑N

n=1w
(n)TΛw(n);

5: repeat
6: k ← k + 1;
7: Update w(n) by solving (8) for all n ∈ {1, 2, ..., N};
8: Update g by (7);
9: y(k+1)← 1

2 ||EΩ−gU ||2F + 1
2g

2
∑N

n=1w
(n)TΛw(n);

10: until y(k)− y(k + 1) ≤ ε
11: Output: gU

2.4. Efficient regularization matrix

In this section, we consider the regularization matrix Λ(n).
When we use the proposed two types of basis functions, the
smoothness constraint of u(n) may still be too weak. For
example, fitting using only low-frequency cosine functions
produces fringe patterns in the reconstructed images and the
boundary of the B-spline basis is not continuous when we
include zero- or first-order spline functions. To avoid this
problem, we propose to apply a quadratic variation (QV) con-
straint for smoothing as follows:

In−1∑
i=1

|u(n)(i)− u(n)(i+ 1)|2 = ||L(n)u(n)||22

= w(n)TΦ(n)TL(n)TL(n)Φ(n)w(n), (11)

where a matrixL(n) ∈ R(In−1)×In is a smoothness constraint
matrix typically defined as

L(n) :=


1 −1

1 −1
. . . . . .

1 −1

 . (12)

Hence, if we employ the QV constraint, the regularization
matrix is given by Λ(n) = ρΦ(n)TL(n)TL(n)Φ(n), where
ρ is a regularization parameter.

2.5. Improved algorithm

Note that, when applying the proposed greedy deflating algo-
rithm, the resulting output tensor Z is constructed by adding
the gU term iteratively. Since the values of the missing el-
ements are not included in the objective function, the values
of gU Ω̄ affect the result directly. When some very wrong
values are added to Z during the early stage of deflation, it
is not easy to reduce the error in the later stage of deflation
because the scale gr of the latter rank-one tensor could be
too small. To prevent such a scenario, we propose to set the

regularization parameter ρ to have a large value in the early
stage and relatively small values in the later stages. We set ρ0

and ρmin, and update ρ ← max(ρmin, νρ) in each deflation,
where 0 < ν < 1 (typically 0.95) controls the rate of decreas-
ing ρ. To implement this idea, we just insert the following
update between the fifth and the sixth row in Algorithm 1:

Λ(n) ← max(νk−1ρ0, ρmin)Φ(n)TL(n)TL(n)Φ(n); (13)

for all n ∈ {1, 2, ..., N}. We call the proposed method as
‘robust FPC’ (RFPC).

2.6. Convergence

We have established the local convergence property of our
algorithm. First, the update rules for g,w(n) in our method do
not increase the objective function of (4) because both update
rules are based on convex optimizations. Next, we have f(k+
1) ≤ f(k) in Algorithm 1 by doing the following: First, we
can put f(k) = ||EΩ||2F and f(k + 1) = ||EΩ − gUΩ||2F .
When the initialization for g is given as zero, the objective
value at the starting point in Algorithm 2 is given by ||EΩ||2F .
Since the objective function does not increase after updating
g and w(n), we have

f(k) = ||EΩ||2F ≥ ||EΩ − gUΩ||2F + g2
N∑

n=1

w(n)TΛw(n)

≥ ||EΩ − gUΩ||2F = f(k + 1), (14)

taking into account that g2
∑N

n=1w
(n)TΛw(n) ≥ 0.

3. EXPERIMENTS

Ten benchmark (256x256x3) RGB color images shown in
Fig. 1(A) were used in our experiments. First, we applied
the proposed algorithms of FPC and RFPC to the ‘Lena’ im-
age with various parameter settings for ρ ∈ {0, 1, 10, 102,
103, 104} and a number of basis functions for #dimension
∈ {23, 24, 25, 26, 27, 28}. Fig. 1(B) shows the results
with #dimension = 128 from the incomplete image with
90% missing ratio, and Fig. 1(C) shows the results of the
peak signal-to-noise ratio (PSNR) for all parameter settings.
We can see that the performance of RFPC was more accu-
rate than that of FPC with all settings of ρ for all settings
of #dimension, where we set ρ0 = 1000, ρmin = 1, and
ν = 0.95 in RFPC. Next, we applied the state-of-the-art al-
gorithms for matrix and tensor completion of LTVNN1 [19],
HaLRTC2 [5], STDC3 [15], and FBCP-MP4 [16] for all our
benchmark images with various missing ratios {60%, 70%,

1Linear Total Variation Approximate Regularized Nuclear Norm
2High Accuracy Low-Rank Tensor Completion
3Simultaneous Tensor Decomposition and Completion
4Fully Bayesian CANDECOMP/PARAFAC tensor completion with Mix-

ture Prior
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Fig. 1. Summary of experimental results: (A) test images, (B) completion results of various ρ’s and RFPC, (C) PSNR evaluation
of the proposed methods for various settings, and (D) comparison with existing state-of-the-art methods.

80%, 90%, 95%} (See Fig. 1(D)). Since ‘Facade’ and ‘House’
contain some non-smooth parts, the smoothness constraints
produced some small errors of over-smoothing; however, the
proposed algorithms outperformed all the existing methods
significantly in the other eight images by a large margin.

4. DISCUSSION: NOVELTY AND EFFECTIVENESS

In Refs. [20, 21], models of FPD with Fourier series and B-
spline basis functions were proposed. A penalized smooth
PARAFAC decomposition model was proposed in [22, 23].
However, these algorithms cannot be applied for tensor com-
pletion with missing elements. In contrast, our model is de-
signed for the completion problem to enforce the smoothness
constraints by combining the functional and penalized ap-
proaches at the same time. A functional model reduces the
number of parameters of a PD model, and the penalty term
guarantees the smoothness of the component vectors, depend-
ing on the value of ρ. This allows us to adjust adaptively
the smoothness levels by multiplying the scaling parameter
g2
r and ρ into the smoothness constraint terms.

The LTVNN algorithm [19] imposes the total variation
penalty into an ‘output matrix itself.’ In Refs. [15, 16], some
penalties based on prior information are applied; however,
they are based on a different kind of assumptions, i.e., the in-
dividual component vectors are similar. For these reasons, our

model and optimization algorithms are quite different from
those described in the literature.

Our methods have two kinds of efficiency. First, our FPD
model allows us to reduce the number of model parameters
by Ln/In. This property is really helpful for dealing with a
very large-scale data tensor. Second, the adaptive smoothness
of our model plays a very important role in outperforming
the other existing methods. In the case of completion with
very high missing ratio, the uniqueness of the solution would
be quite low. Since the values of the missing elements are
constructed by adding the corresponding values of gU , the
first term gU with a large g affects the results significantly.
Note that an FPD model with a large ρ gives a good overview
of the approximation (see Fig. 1(B)); it is therefore a good
idea to extract the smooth components first.

5. CONCLUSIONS

In this paper, we proposed an efficient algorithm for smooth
tensor completion by applying functional and adaptive penal-
ized smoothness. This algorithm has the advantages of com-
putational cost and higher performance at the same time and
also guarantees local convergence. The proposed RFPC al-
gorithm outperformed the existing state-of-the-art algorithms
by a large margin, which was confirmed by our extensive ex-
periments.
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