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ABSTRACT 

 
A well-trained acoustic model that effectively captures the 
characteristics of sound events is a critical factor to develop 
more reliable system for sound event classification. Deep 
neural network (DNN) which has an ability to extract 
discriminative representation of features can be a good 
candidate for acoustic model of sound events. Compared to 
other data such as speech or image, the amount of sound 
database is often insufficient for learning the DNN properly, 
resulting in overfitting problems. In this paper, we propose a 
cross-acoustic transfer learning framework that can 
effectively train the DNN even with insufficient sound data 
by employing rich speech data. Three datasets are used to 
evaluate our proposed method; one sound dataset is from 
Real World Computing Partnership (RWCP) DB and two 
speech datasets are from Resource Management (RM) and 
Wall Street Journal (WSJ) DBs. A series of experimental 
results verify that cross-acoustic transfer learning performs 
significantly better than the baseline DNN which was trained 
only from sound data, achieving 26.24% relative 
classification error rate (CER) improvement over the DNN 
baseline system.  
 

Index Terms— Sound event classification, speech-to-
sound, transfer learning, deep neural network.  
 

1. INTRODUCTION 
 
Recent advances in deep learning have provided remarkable 
improvements in various recognition/classification 
applications such as automatic speech recognition (ASR) [1]-
[4] and speaker recognition [5]-[7]. In the deep learning 
framework, a large amount of training data is generally 
required to learn reliable feature representations. In some 
situations where only a small amount of data is available, 
however, we cannot utilize the deep learning framework 
because it is likely to be overfitted. In such cases, transfer 
learning [8], [9], which takes advantage of resource-rich data 
from other domain, can be a good solution.  

Researches on transfer learning are mostly conducted in 
the field of cross-lingual ASR [10]-[14]. Numerous 
techniques have been applied for cross-lingual acoustic 
modeling such as Kullback-Liebler divergence based hidden 
Markov model which is able to exploit multilingual 

information [10] and subspace Gaussian mixture model with 
a shared multilingual phonetic subspace [11]. Recently, a 
deep neural network (DNN) has received great attention in 
transfer learning due to more abstract and invariant features 
represented by multiple hidden layers. Das and Hasegawa-
Johnson [12] focused on knowledge transfer of a DNN from 
English to Turkish. Swietojanski et al. [13] constructed the 
acoustic model for German using the pre-trained DNNs from 
one or all of German, Portuguese, Spanish and Swedish 
which belong to the same continent, Europe. Huang et al. [14] 
utilized a multilingual DNN concept as an initialization 
which is jointly pre-trained from several languages such as 
French, German, Spanish, and Italian. Even though their 
specific scenarios are different, the main process consists of 
two parts in common; unsupervised pre-training with 
resource-rich data followed by supervised fine-tuning with 
resource-scarce data. Since the pre-training process does not 
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Figure 1. Overall scheme of cross-acoustic transfer learning. 
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require labeled data, it is possible to use similar data from 
other domain for better initialization of the DNN.  
  There are several efforts to apply the deep learning 
approaches into a sound event classification task including 
standard DNN [15], composite deep belief network (DBN) 
[16], and convolutional neural network (CNN) with multiple 
resolution spectrogram inputs [17]. However, most of them 
consist of only a small number of hidden layers or hidden 
units since sound events generally have a relatively short 
duration compared to other acoustic data such as speech and 
music. Moreover, in some applications such as audio 
surveillance, it is hard to collect many data since those sound 
events (e.g., car crash or explosion) are seldom reproducible 
in real world. To overcome this problem, we propose a new 
learning scenario, cross-acoustic transfer learning for sound 
event classification as depicted in Figure 1. Unlabeled large-
scale speech corpus is used to initialize a DNN by 
unsupervised greedy layer-wise pre-training, and then the 
pre-trained DNN is further optimized by using supervised 
fine-tuning with sound data. Finally, our model is compared 
to baseline DNNs which are trained only with sound data by 
measuring the classification accuracies of the test sound 
events. To the best of our knowledge, this work is the first 
attempt at applying transfer learning to sound event 
classification using a large amount of speech data.  
 The remainder of the paper is organized as follows: we 
provide a brief overview of transfer learning as well as our 
proposed method in Section 2. In Section 3, several 
experimental results are presented and our conclusions are 
summarized in Section 4.  
 

2. TRANSFER LEARNING 
 
Transfer learning is a machine learning technique that 
transfers knowledge learned from a source domain to a target 
domain [9]. Even though the ‘knowledge’ can be interpreted 
in many different ways, we limit its meaning to ‘model 
parameters’ as used in the ASR areas [10]-[14]. In other 
words, trained model parameters from speech are re-used 
during the training process for an acoustic model of sound 
events in this work. 

 
2.1. DNN transfer learning 
 
A DNN is a multi-layer perceptron (MLP) with more than 
two hidden layers [18], [19]. For sequential data such as 
speech and sound, an input layer is usually composed of 
several frames of observations to cover a long context while 
an output layer consists of several nodes which are identical 
to the number of labels. Those layers are connected by 
nonlinearity functions, including sigmoid or hyperbolic 
tangent which allow a DNN to extract the more distinctive 
features of input data. 

The usual training process of a DNN consists of two 
parts; an unsupervised generative pre-training which can be 
done in greedy, layer-wise fashion and a supervised 

discriminative fine-tuning with error back-propagation. The 
pre-training process can leverage the DNN to get a better 
initial point than random initialization for the fine-tuning 
process by employing a large amount of unlabeled data. 
Transfer learning which utilize data from different domains 
can be easily adopted to the DNN training procedure since 
the pre-training process does not require label information. 
Therefor a DNN is a suitable framework to apply transfer 
learning.  

 
2.2. Cross-acoustic transfer learning 
 
Training a DNN for the acoustic model of sound events in the 
transfer learning framework requires a large amount of 
database. However, the amount of sound event database 
usually deficient due to the characteristics of the sound events. 
A speech database that is generally used in ASR tasks can be 
a good candidate for this situation since it is sufficient to train 
a deep model and is similar to sound events in the aspect of 
acoustic characteristics.  

Figure 2 shows typical spectrograms of speech and sound 
with corresponding enlarged views in the range of 100 msec 
which is accord with the usual input duration of the DNN for 
time-domain signals. From Figure 2(c) and (d), we can 
observe that speech and sound show similar acoustic patterns, 
i.e., harmonically arranged horizontal lines, even though their 
entire signals are different. Furthermore, we can analyze that 
the similarity between speech and sound comes from manner 

(a) (b)

(d)(c)

 

Figure 2. Typical examples of spectrograms; (a) speech (English 
read speech), (b) sound (twanging of a stringed music instrument), 
(c) and (d) corresponding enlarged views of the 100 msec context 
window range, respectively.   
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of articulation of speech [20] and production process of sound 
like as: 

 Plosive speech sounds are produced by building up 
pressure behind a total constriction somewhere in the 
vocal tract, and suddenly releasing the pressure, which 
are similar to explosion and collision sounds. 

 Fricative speech sounds are produced by exciting the 
vocal tract by a steady air flow, which are related to 
friction between solids, air flow, and whoosh. 

 Vowel speech sounds are produced by exciting a fixed 
vocal tract with quasi-periodic air pulses, which are 
similar to vibration of string or air.  

Therefore, we can utilize speech for training the DNN 
acoustic model in the transfer learning scenario which is 
called cross-acoustic transfer learning; the pre-trained DNN 
with speech data is fine-tuned with sound data.  
 

3. EXPERIMENTS 
 
3.1. Database 
 
In order to evaluate the effectiveness of our method, we 
selected a total of 50 sound event classes from the Real World 
Computing Partnership (RWCP) Sound Database in Real 
Acoustic Environments [21]. The sound events were 
generated from the wide range of materials and interactions, 
including collision of wood, metal, and plastic, dropping 
particles, jetting gas, rubbing papers, and playing the 
musical instruments. Each class contains 100 clips of sounds 
and we assigned 70 clips for training and 30 clips for testing. 
Note that each clip is composed of a corresponding sound 
event as well as short silence before and after the sound event. 
All sound clips were digitized at 16 bits per sample with 16 
kHz sampling rate in the mono-channel. An average duration 
of each clip is about 1 sec long and totally about 1 hour. 
 In the proposed transfer learning framework, we used 
two auxiliary speech corpora for pre-training the DNN; 
DARPA Resource Management (RM) [22] and Wall Street 
Journal (WSJ) [23]. We took only training data of those 
corpora; the RM SI-training set and WSJ SI-284 training set. 
Finally, we summarize all the databases used in this paper in 
Table 1. 
 
3.2. Baseline DNN 
 
First, we evaluated the performance of the DNN trained from 
only the RWCP database in the Kaldi+PDNN framework 
[24], [25]. We used 13 successive 40-dimensional Mel-
filterbank log energy as an input of the DNN, which was 
calculated from 10 msec frame size with 50% overlap. For 
initialization, a deep belief network (DBN) with Gaussian-
Bernoulli restricted Boltzmann machine (GBRBM) for first 
layer and others are Bernoulli-Bernoulli RBM (BBRBM) was 
pre-trained with the RWCP training data. After pre-training, 
a softmax layer was added on top of the DBN, and then fine-

tuned with the same data with labels. Note that all tuning 
parameters including learning rate, number of training epochs, 
and size of mini-batch were same as default setting in [22]. 
The classification results of the trained DNN were measured 
with various number of hidden layers and hidden nodes as 
shown in Table 2. Here, the best performance is achieved 
from 2,048 hidden nodes with single hidden layer. As the 
number of hidden nodes increased from 256 to 2048, we can 
obtain better results in almost cases. However, the use of 
multiple hidden layers was not effective in the performance. 
These results imply that shallow neural network works better 
than deep architecture when using a small size database as we 
expected. 
 
3.3. Transfer learning 
 
In this section, we investigated the effectiveness of cross-
acoustic transfer learning by using two different sizes of 
auxiliary speech datasets, RM and WSJ. To obtain the 
acoustic model of sound events, unsupervised pre-training 
with speech data and supervised fine-tuning with sound data 
were consecutively performed as mentioned in Section 2.  

In the usual fine-tuning process of cross-lingual transfer 
learning, a randomly initialized softmax layer is added on top 
of the pre-trained DNN, and then just fine-tune the soft-max 
layer while other layer to be left frozen [26]. This is because 
if we fine-tune a whole DNN, we may fall into the overfitting 
problem since the size of target database is typically small in 
transfer learning. Figure 3 shows the classification error rate 
(CER) of cross-acoustic transfer learning with 6 hidden layers 
of DNN when the number of frozen layers were varied from 
0 to 6. Note that # of frozen layers = 0 is the case where the 
entire hidden layers were fine-tuned as in the standard DNN 
fine-tuning process. As can be seen, CERs decreased for all 
cases when we train the more hidden layers during the fine-
tuning process both RM and WSJ cases. It means that training 
more hidden layers is more effective than only softmax layer 

Table 1. Configuration of three databases. 

Database # clips Total durations 
RWCP 5,000 1 hour 

RM (SI-training) 4,000 4.4 hours 
WSJ (SI-284) 38,000 66 hours 

 

Table 2. Classification error rate (%) of baseline DNN system 
with various hidden layers and nodes (Bold face represents the 

best result along column axis). 

# nodes
# layers 256 512 1,024 2,048 

1 6.75 5.35 4.95 3.81 
2 6.75 4.75 4.88 4.75 
3 6.55 5.15 4.01 5.28 
4 7.62 5.41 5.28 5.08 
5 6.48 6.02 5.55 4.88 
6 8.16 6.28 5.88 5.68 
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even though the size of target database is small. The trend of 
the CER performance is opposite to other related works in 
transfer learning [14], [26]. We can find the reason of those 
observations from the similarity between source and target 
data. Since speech and sound are less similar than speech in 
different languages from the cross-lingual scenario, the 
initialized DNN with speech data should be more adjusted 
with sound data for a better representation of sound events. 
As a result, we can achieve the lowest CER by freezing only 
a small number of hidden layers. 

Next, we compared the CER of cross-acoustic transfer 
learning from two different speech databases with the 
baseline DNN listed in Table 3. The results of cross-acoustic 
transfer learning were coming from the previous experiments 
which has the lowest CER in each line (See Figure 3). In most 
cases, cross-acoustic transfer learning outperformed the 
baseline DNN except 256 hidden nodes case. We can see that 
the degree of improvement increased as the size of the DNN 
became larger both RM and WSJ cases. Moreover, we 
obtained better performance when we used bigger size of pre-

training speech database. These results imply that the DNN 
pre-trained with speech data is very effective to initialize the 
DNN for sound data. Also, we obtained the best performance 
of 2.81% CER on WSJ case, achieving 26.24% of relative 
improvement compared to best performance of the baseline 
DNN.  Finally, we can train a deeper model for resource-
scarce sound from our cross-acoustic transfer learning 
approach which can be able to extract more distinctive feature 
from sound. 
 

4. CONCLUSIONS 
 
In this paper, we proposed a new learning framework called 
cross-acoustic transfer learning to train the DNN for 
modeling resource-scare sound events. Transfer learning was 
applied to utilize the similarity between speech and sound 
events for training the DNN. In the method, the DNN was 
firstly pre-trained with two speech datasets, RM and WSJ, 
and then fine-tuned with the RWCP sound dataset. In the 
context of the sound event classification scenario, we 
conducted a series of experiments to verify the effectiveness 
of the proposed cross-acoustic transfer learning. The 
experimental results show that our method outperformed the 
baseline DNN system, obtaining over 20% relative 
improvement in terms of CER. Our works would potentially 
be applied to other resource-scarce environment such as 
audio surveillance applications. In the future, we will extend 
our works to train the DNN for modeling the sound events by 
using additional speech data in various languages and 
environments, which will cover the wider range of sound 
events. 
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