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ABSTRACT

We propose a depth image denoising and enhancement frame-
work using a light convolutional network. The network con-
tains three layers for high dimension projection, missing data
completion and image reconstruction. We jointly use both
depth and visual images as inputs. For the gray image, we
design a pre-processing procedure to enhance the edges and
remove unnecessary detail. For the depth image, we propose
a data augmentation strategy to regenerate and increase es-
sential training data. Further, we propose a weighted loss
function for network training to adaptively improve the learn-
ing efficiency. We tested our algorithm on benchmark data
and obtained very promising visual and quantitative results at
real-time speed.

Index Terms— depth image denoise; depth image en-
hancement; deep convolutional network; data augmentation

1. INTRODUCTION

With the development of affordable and portable depth cam-
eras [1][2], the depth image plays an increasingly important
role in fundamental research and daily applications. By utiliz-
ing a depth image, people have greatly improved the perfor-
mance in several key vision-related topics, like segmentation,
tracking, recognition, and reconstruction. Many real-world
applications have been developed, especially in the human
computer interaction field. However, due to the limitation of
commercial depth cameras, the quality of depth images is far
from satisfactory. First, there is always different shapes of
black holes around edges and on dark surfaces. Second, the
noise is much stronger when compared with color images. To
deal with these issues, depth image denoising and enhance-
ment are usually employed. The denoising step is used to fix
corrupted isolated pixels and small regions. The enhancement
step aims to improve image details, especially the edges of the
depth image.

Several pixel-wise image processing methods have been
developed, such as joint bilateral filtering [3], image inpait-
ing [4], spatial temporal relationship [5], cost-volume [6],
wavelet tight frame [7] and low rank matrix [8]. These meth-
ods all take advantage of the color-depth relationship and are
not fast enough for real-time. Recently, deep learning has be-

come a popular and effective tool for feature representation
[9][10] and several pixel-level methods have been success-
fully proposed [11][12]. We believe the CNN-based frame-
work can provide a possible solution to the depth image de-
noise and enhancement.

Fig. 1. The flowchart of DE-CNN based depth image denois-
ing and enhancement.

We propose the denoise and enhance convolutional neu-
ral network (DE-CNN) to improve the depth image quality,
shown in Fig. 1. The DE-CNN is a pixel-wise generative net-
work. We designed the network with three layers and each
layer has different structures for different purposes, i.e., 1st
layer for high dimensional projection; 2nd layer for miss-
ing data completion and 3rd layer for image reconstruction.
Moreover, in the training part, we propose the color image
preprocessing procedure and depth data augmentation method
for data preparation. A weighted map based loss function is
also introduced to emphasize edges. By comparing with the
most recent state-of-the-art methods, the proposed model is
highly computational efficient for real-time applications with
very promising results.

2. DEPTH DENOISE AND ENHANCE
CONVOLUTION NEURAL NETWORK (DE-CNN)

In order to solve the denoising and enhancement problem
depth images, we need a pixel-wise generative model. In-
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spired by SRCNN [11] and FCNN [12], we employ the con-
volutional neural network and design the DE-CNN frame-
work considering unique features of our problem. Firstly,
since our goal is to regenerate an image rather than giving
a label, the full connection layer should not be employed.
Secondly, most CNN-based pixel-based image processing al-
gorithms do not include the max pooling layer to avoid in-
formation loss. Here, we add the max pooling to screen out
certain corrupted values for denoising. Thirdly, we define a
new weighted loss function to take advantage of the depth-
color image relationship and emphasize the edges. There-
fore, the DE-CNN has three layers with different purposes re-
spectively, i.e., the high dimensional projection, missing data
completion and image reconstruction, shown in Fig. 1.

Fig. 2. The structure of DE-CNN

2.1. DE-CNN framework

The DE-CNN has a light structure and every layer of DE-
CNN is designed with special goals.

High dimensional projection Since the visual and depth
images are highly correlated, we want to project the data into
a higher dimensional space to discover the hidden relation-
ship between them. This layer set consists of a convolution
layer, a max pooling layer and a rectified linear unit (ReLU)
layer. The convolutional layer can extract invisible existing
information, while the max pooling process helps to screen
out those black holes and noisy parts. The output is the high
quality image information in the higher dimensional space.

Missing data completion In this layer, the relation be-
tween the visual and depth images is much stronger. Hence,
missing depth information can be restored with the help of the
corresponding visual image in this space. This layer also con-
sists of a convolutional layer, a max pooling layer and a ReLU
layer. The convolutional layer fills up the missing depth im-
age, and the max pooling layer discards the visual information
and keeps the depth data.

Image reconstruction After completing the depth image
in the high dimensional space, the last step is to reconstruct
the image. Here, we only use the convolution operation to
summarize and generate the final output depth image. Due to
the image spatial relationship, nonlinear operations, like the
max pooling and ReLU layer, could ruin this property.

2.2. Loss function definition

For the learning process of DE-CNN, we specifically define
the loss function to emphasize the edge influence. Usually,
a Euclidean-based distance function is used as the loss func-
tion, indicating the difference between the network output and
corresponding ground-truth. The general loss function treats
every part equally, but we want to emphasize the edges be-
cause these parts are always corrupted by large black holes
and noise. Hence, we define a weighted map based loss func-
tion in (1),

floss = ‖M • (IO − IG)‖2 (1)

where M is the weighted map and IO and IG represent the
network output and ground-truth images individually. After
obtaining the edge information from the ground-truth depth
image, in the weighted map we set values around edges close
to 1 and those in smooth areas to be much smaller. In this
way, we can guide the network to learn stronger explanation
capacity around edge regions.

3. DATA PREPROCESSING AND AUGMENTATION

Directly using noisy depth images to train a network can be
helpful, but very limited especially for the black holes. Hu-
mans can evaluate the missing pixels much easier with the
help of the color image. The strong relationship between the
depth and color inputs have been used in [8]. In this paper
we use the depth and gray images together to complete the
denoising and hole-filling tasks in the depth image.

3.0.1. Gray image pre-process

By analyzing the depth image, we observe that the noise is
equally distributed and the black holes mostly exist around the
edges. Hence, we design a gray image pre-processing proce-
dure to emphasize important detail and eliminate useless in-
formation. As shown in Fig. 3, the pre-processing procedure
has six steps, including the intensity equalization, bilateral fil-
tering, edge extraction, watershed segmentation, segment av-
erage padding and intensity quantization. Among these, the
goal of “watershed segmentation” and “segmentation average
padding” is to combine similar intensity pixels into one re-
gion with the same averaged value. After pre-processing, the
unnecessary detail is weakened and edges are enhanced.

3.0.2. Depth image pre-processing and training data aug-
mentation

In the dataset, the groundtruth depth image still has some
black holes. This fact severely confuses the network since
it does not know whether to pad the black area or not. Hence,
the first step is to drop training patches whose corresponding
groundtruth data contains black areas.
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Fig. 3. The pro-process procedure of gray images.

The next issue is the limited number of training sam-
ples, especially samples with black holes. The key challenge
of depth image enhancement is the black area filling and
padding. We statistically analyze the number of connected
black pixels in every patch and show the plot in Fig. 4 (a).
The number of patches with less than 15 connected black
pixels occupy 98% of the total patches while the number of
patches with large black areas is very small. To increase the
number of these patches, we use a hyperbolic curve as the
probability distribution to reorganize the training set, defined
as

pi = (ecrri/crrm + e−crri/crrm)/3,

where crri is the corrupted level of ith patch and crrm the
max corrupted level among all patches. For pre-defined θ1
and θ2 (0 < θ1 < θ2 < 1), patches with pi less than θ1
are eliminated by this probability; patches of larger than θ1
but less than θ2 are kept by this corresponding probability;
patches with greater than θ2 are duplicated according to their
pi.

We propose a strategy to effectively duplicate specific
training patches by randomly rotating a chosen patach 90,
180 or 270 degrees. Fig. 4 (b) shows the processed and
augmented result. Now the distribution of corrupted levels
is relatively more uniform than shown in Fig. 4 (a). The
patches with large black holes now have more influence on
the network.

(a) (b)

Fig. 4. The histogram of the number of connected pixels in
the training data (a) and processed data set (b).

4. EXPERIMENTS

We firstly evaluate and discuss the framework structure of
DE-CNN. Then, we compare our proposed DE-CNN with
two state-of-the-art depth denoising and enhancement meth-
ods in terms of speed, PSNR, and visual effects. The Mid-
dlebury dataset [13][14] consists of 30 pairs of ground-truth
depth and color images. In [8], the authors manually added
black holes in depth images to simulate the noisy pictures cap-
tured by real depth cameras. This modified version has been
used widely as the benchmark for depth image processing [8].

4.1. DE-CNN framework evaluation

In the following experiment, we use 28 images of the Mid-
dlebury set as the training data and the remaining two as the
test images. We set the first unit as a convolutional layer of
size 1× 9× 9× 128, a 5× 5 max pooling layer and a ReLU
layer. The second unit consists of a 128×1×1×64 convolu-
tional layer, a 3× 3 max pooling layer and a ReLU. A single
64×5×5×1 convolutional layer acts as the last unit. Each ex-
periment is trained using 1.5 million iterations. We evaluate
and compare the framework structure from two aspects: (1)
single depth input vs. joint depth-RGB input; (2) Euclidean
loss function vs. edge based weighted loss function.

4.1.1. Input data comparison

We compare the single depth input and joint depth and color
input. The figure and PSNR comparisons in Fig. 5 and Table
1, show the joint input result provides much better results.
The large black hole areas have been better padded with clear
edges, such as the long brush in test figure one.

a b c

Fig. 5. The DECNN setting comparison: (a) single depth
input; (b) joint depth and RGB input; (c)joint input with pre-
processing and weighted loss function.
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PSNR Depth Joint Weighted Loss
(dB) Input Inputs Function

Test One 32.56 33.46 33.68
Test Two 38.96 39.02 39.18

Table 1. The PSNR comparison of different settings on two
testing figures.

4.1.2. Loss function

We use the edge based weight maps as the weighted loss func-
tion on each output layer to focus on black holes and edges.
Results are further improved, as shown in Fig. 5(c) and Ta-
ble 1. In summary, these experiments have demonstrated the
effectiveness of our network design and data preparation.

4.2. Comparison with other algorithms

We also compare DE-CNN with another two recent algo-
rithms that deliver the best results among others. We denote
the low rank matrix completion method [8] as LRMC and the
data-driven tight framework [7] as DDTF in the following.
For a fair comparison, we use the same training set including
all 30 images in the Middlebury dataset, and compare the
three methods according to their computing efficiency, PSNR
and visual quality.

Fig. 6. The visual quality comparison of our DE-CNN with
two other methods. First row: input depth image; second row:
LRMC’s results; third row: DDTF’s results and fourth row:
proposed DE-CNN results.

Table 2. PSNR(dB) comparison
Middlebury dataset Flower Sculpture Infant 1

Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 36.24 35.96 35.63 33.84 33.20 32.29 40.28 38.85 38.92

Middlebury dataset Infant 2 Infant 3 Book
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 41.92 42.59 42.99 39.76 42.32 43.33 41.37 40.75 42.12

Middlebury dataset Bowling 1 Bowling 2 Cloth 1
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 37.52 38.22 38.00 38.71 39.37 38.18 45.01 46.24 46.86

Middlebury dataset Cloth 2 Cloth 3 Cloth 4
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 41.45 42.35 42.33 42.75 42.37 42.16 39.16 37.43 37.57

Middlebury dataset Cone Toy 1 Clay pot
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 39.16 39.85 38.56 40.67 41.91 42.13 37.62 42.73 43.77

Middlebury dataset Toy brick 1 Toy brick 2 Window
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 39.96 38.79 39.37 39.91 38.56 39.32 38.11 38.49 37.91

Middlebury dataset Bag 1 Bag 2 Origami
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 40.39 39.82 39.06 39.41 38.57 38.52 41.07 41.95 41.67

Middlebury dataset Board game Folder Elk
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 39.32 39.41 40.02 42.72 42.04 43.34 35.36 35.46 35.90

Middlebury dataset Stone 1 Stone 2 Toy 2
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 43.39 45.26 45.49 43.27 46.36 46.58 39.77 40.74 40.80

Middlebury dataset Wood Board Newspaper
Method DE-CNN LRMC DDTF DE-CNN LRMC DDTF DE-CNN LRMC DDTF
PSNR 40.84 39.28 40.80 40.46 39.85 41.04 41.36 41.32 41.18

• Speed After the pre-processing step (it takes 0.05s), DE-CNN
takes 0.033 second to process a 352× 395 depth image using
NVIDIA TITAN X GPU. In comparison, LRMC requires 1.5
minutes for one image. DDTF also needs quite a while.

• PSNR PSNR result are summarized in Table 2 for all 30
images. These results show that DE-CNN has comparable
denoising and enhancement capacity to state-of-the-art algo-
rithms.

• Visual Quality We show the sample image results in Fig. 6.
The general visual quality is similar but edges in DE-CNN
processed images are sharper than for the other two methods.

5. CONCLUSION

We propose a novel convolutional neural network DE-CNN for
pixel-wise depth image denoising and enhancement. It is a light
CNN-based network with two units consisting of a convolution
layer, max pooling layer and ReLU layer, and one convolution layer
in the last unit. The training data preprocessing and augmentation
have effectively improved the performance. Based on our experi-
ments, the proposed model has a very high computational efficiency
and promising performance for pixel-wise denoising and enhance-
ment. We believe this model can be applied for real-time processing
in real-world depth image pre-processing applications. It’s worth
mentioning that at current stage we still we don’t have enough train-
ing data. In the future, we will collect more related data and improve
the performance of our deep learning framework.
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