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ABSTRACT

Automated detection of abandoned object (AO) is an impor-
tant application in video surveillance for security purposes.
Because of its importance, a number of techniques have been
proposed to automatically detect abandoned objects in the
past years. However, these techniques require prior knowl-
edge on the properties of the object such as its shape and
color, in order to classify foreground objects as abandoned ob-
ject. In contrast, independent component analysis (ICA) does
not require such prior knowledge. However, it can only model
one dataset at a time, thus limiting its usage to monochrome
frames. In this paper, we propose to use independent vec-
tor analysis (IVA), a recent extension of ICA to multivariate
data that takes the dependence across multiple datasets into
account while retaining the independence within each dataset.
We present a new framework for AO detection using IVA and
show that it provides successful performance in complicated
scenarios, such as for videos with crowd, illumination change,
and occlusion.

Index Terms— Abandoned objects, Background subtrac-
tion, Independent vector analysis, Object detection, Video
surveillance

1. INTRODUCTION

The need for automated video surveillance for detection of
AOs, has dramatically increased recently due to increased se-
curity concerns, since manual surveillance is still the primary
security measure for AO detection. Previously proposed tech-
niques for AO detection implement a foreground object de-
tection scheme and then apply a classifier to classify the fore-
ground objects as an AO. In [1], the authors feed the shape,
intensity and motion cues of static regions into a support vec-
tor machine (SVM) model to classify the static regions as true
or false positives. In [2], a k-nearest neighbors (KNN) classi-
fier identifies the foreground object as bag or non-bag, based
on the shape and size of the regions. However, one draw-
back with background subtraction techniques is that the fore-
ground objects that remain stationary for a sufficient period of
time become a part of the background. Different approaches

are proposed to avoid this issue. In [3] and [4], a dual back-
ground concept is implemented, which includes long term and
short term background, while in [5], the algorithm updates a
region mask to avoid losing the AO in the background image.
Thus, these methods require additional post-processing for
updating the background. The methods described in [2], [3],
[5] and [6], use an empirical threshold based on some prior
knowledge for the classification of AO. A technique based on
ICA, which does not require prior knowledge of the nature of
the object, was implemented to detect AOs, [7]. However, it
makes use of monochrome images and does not take advan-
tage of the dependence across color channels.

In this paper, we present a technique for detection of
AO based on IVA that exploits dependence across multiple
datasets. The proposed technique does not require any prior
knowledge of the properties of the object and does not make
use of any user defined parameters. The proposed technique
provides desirable performance in complicated scenarios,
such as crowd, occlusion, and illumination change. The rest
of the paper is organized as follows. Section 2 describes the
IVA algorithms implemented in this technique along with a
brief description of the order selection scheme. Section 3
describes the detection technique implemented for AO detec-
tion and the results of the detection technique on real world
videos are shown in Section 4. Section 5 concludes the paper.

2. BACKGROUND

2.1. Independent vector analysis

IVA is a generalization of ICA that achieves source separa-
tion by taking independence across latent sources, in each
dataset, into account in addition to dependence across mul-
tiple datasets. The general form of IVA model is given as

x[k] = A[k]s[k], k = 1, ...,K, (1)

where A[k] ∈ RN×N , k = 1, ...,K are the mixing ma-
trices, and s[k] = [s

[k]
1 , ..., s

[k]
N ]> are the latent sources for

the kth dataset. For each dataset k, the observation matrix
x[k], k = 1, ...,K, is formed from a linear mixture of N
source components in dataset k. The nth source component
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vector (SCV) sn = [s
[1]
n , ..., s

[k]
n ]>, is defined by concatenat-

ing the nth source from each of the K datasets. The goal in
IVA is to estimate K demixing matrices in order to estimate
the source components, y[k], using y[k] = W[k]x[k], such
that each SCV is statistically independent of all other SCVs.
This independence is achieved by minimizing the mutual in-
formation cost function,

IIVA =

N∑
n=1

H[yn] −
K∑
k=1

log
∣∣∣det(W[k]

)∣∣∣ − C, (2)

where H[yn] denotes the entropy of the nth SCV and C is
the constant term H[x[1], ...,x[K]]. The gradient of the cost
function in (2) is given by
∂IIVA
∂W[k]

= −
N∑
n=1

E

{
∂ log p(yn)

∂y
[k]
n

∂y
[k]
n

∂W[k]

}
−
(
W[k]

)−>
.

A number of algorithms have been proposed that take dif-
ferent types of statistical properties, such as, second order
statistics (SOS) and higher order statistics (HOS), into ac-
count. IVA-Gaussian (IVA-G) [8], makes full use of SOS
while IVA-Laplacian (IVA-L) [9], which assumes a Lapla-
cian distribution as source prior, makes use of only statistics
higher than two. IVA for multivariate generalized Gaussian
distribution (IVA-GGD) [10] assumes a multivariate general-
ized Gaussian distribution (MGGD) as the source prior, which
includes a wide range of unimodal distributions, such as sub-
Gaussian, super-Gaussian and normal distribution and thus
exploits SOS and HOS between and within datasets. IVA-
GGD assumes the samples to be, independent and identically
distributed (i.i.d.) and uses a fixed set of shape parameter val-
ues while estimating the scatter matrix.

2.2. Order selection

Estimating the signal subspace and performing ICA within
this reduced space enables more accurate detection of the
components. A number of techniques have been proposed
to estimate the number of informative components, see e.g.,
[11, 12, 13, 14]. However, most order selection methods
assume that the samples are i.i.d., which is not the case for
videos, [7]. Hence, we estimate the order based on the tech-
nique described in [14], which downsamples the original
samples in order to get the i.i.d. samples and implements the
formulation described in [14].

For this application, the number of informative compo-
nents are estimated for each dataset separately. Hence, the
order estimated for the kth dataset is denoted by M [k]. In or-
der to include more variability, the final order, M̂ , is selected
to be the maximum of all the orders estimated across datasets,
max

k=1,...,K

{
M [k]

}
.

3. IVA FOR AO DETECTION

ICA has previously been implemented on video sequences for
object detection in an indoor environment, see e.g., [15, 16].

(a) (b)

(c) (d) (e)

Fig. 1: Abandoned object in (a) Original color frame. (b)
Gray-scale frame. (c) Red channel. (d) Green channel. (e)
Blue channel.
However, the model used in these techniques require the num-
ber of frames or background and foreground frames to be
specified by the user. Thus, these techniques are incapable
of dealing with complicated environments. When order se-
lection, as described in Section 2.2, is used to determine the
signal subspace, ICA estimates independent components that
consist of a background component and several time indepen-
dent objects, since the background exhibits pixel-wise depen-
dence across the frames, while the foreground objects exhibit
an independent relationship with the background and other
foreground objects. This independence is based on the pixel
intensities of the background versus the foreground. Hence, if
the foreground object has a similar pixel intensity as the back-
ground, the foreground object would not be extracted as an
independent component. Thus, for monochrome images it is
difficult to distinguish the foreground objects from the back-
ground. However, it is easy to distinguish the background
from the foreground in the color space. As seen in the Fig-
ure 1, the object can be more clearly distinguished from the
background in the R-channel than in the gray scaled image.
Since ICA is limited to univariate data and thus, is limited to
monochrome images, we assume the IVA model given in (1)
that can incorporate multivariate data and make use of depen-
dence across multiple datasets while still maintaining inde-
pendence within each dataset.

3.1. IVA model for videos

In the proposed application of IVA to video processing, each
of the RGB color channels is represented by an RN×P matrix,
where N is the number of frames and P is the number of pix-
els. The rows of each observation matrix, x[k] ∈ RN×P , k =
1, 2, 3, are formed by scanning the frame column-wise to form
a vector of length equal to P . The dimension of the observa-
tion matrix is reduced from N to M̂ using principal compo-
nent analysis (PCA), M̂ < N , where M̂ is estimated using
the technique described in Section 2.2. The signal subspace is
denoted as, x̂[k] ∈ RM̂×P , which is related to the observation
matrix, x[k] by the data reduction matrix, F[k] ∈ RM̂×N that
is formed by the eigenvectors with the first M̂ highest eigen-
values of x[k]. The signal subspace thus contains the com-
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ponents that have high variance. The IVA-GGD algorithm
is implemented on x̂[k], to estimate the demixing matrices,
W[k] ∈ RM̂×M̂ . IVA-GGD makes use of fixed shape param-
eters that covers a wide range of unimodal distributions, such
as sub-Gaussian(β > 1), super-Gaussian (β < 1) and normal
distribution (β = 1) The choice of parameters, β, used for
this application is described in Section 3.2.

3.2. Parameter selection for IVA-GGD

IVA-GGD makes use of fixed shape parameters from a fi-
nite list of values and the choice of shape parameter, β,
highly affects the identifiability of the IVA model. The
(non)identifiability condition for IVA, with i.i.d. assumption,
states that the IVA model cannot be identified if there are
two or more α-Gaussian SCV’s that satisfy the condition,
Rm,α = DRn,αD ∈ RKα×Kα , where Rn,α is the covari-
ance matrix of α-Gaussian components in the nth SCV and
D ∈ RKα×Kα is any diagonal matrix, [17]. The α-Gaussian
components refer to the group of the sources that are inde-
pendent of other sources within a SCV and come from a
multivariate Gaussian distribution. Here α is the index that
denotes the subset of α-Gaussian components. Since, for
videos, the RGB channels and the frames are highly corre-
lated, i.e., Rm,α and Rn,α are nearly identical, the IVA model
is likely to be non-identifiable. Hence, taking this issue into
account, we consider the shape parameter, β to be a positive
real number not equal to 1, i.e., the SCV’s are chosen to be
non-Gaussian.

3.3. Significance of the mixing matrix

Once the demixing matrices, W[k], are estimated using IVA-
GGD, the source components are estimated using, ŝ[k] =
W[k]x̂[k]. The mixing matrix is computed by performing
back-reconstruction, i.e., Ã[k] = F†

[k]
Â[k], where Â[k] =

W[k]−1 and F†
[k] is the pseudo-inverse of the data reduction

matrix F[k].

The columns of the estimated mixing matrices represent
the time courses for the source components estimated for the
dataset. Thus, for a source component, s[k]i , the ith column of
the kth mixing matrix , holds a relatively larger value at the
jth time point, where j denotes the frame index in which the
source component, s[k]i , appears. Hence, for a source com-
ponent that represents an AO, its corresponding column in
the mixing matrix would exhibit a step response, where the
step increase would occur at the time point when the object
is abandoned. Figure 2 shows the IVA model used for videos
with the SCV that represents the AO and its corresponding
time course. The next section describes the technique imple-
mented to detect a step response in the time course, i.e., an
AO.

3.4. AO detection

The technique for the detection of AOs consists of, first, locat-
ing the time point at which a potential step change occurs and
second, a two sample t-test on the time course that decides if
the step is present or not.

In order to locate the point where the step change oc-
curred, each column of each mixing matrix is correlated with
an ideal step function and an area of interest is obtained that
specifies the time points surrounding the step change. The
length of the ideal step function is L time points, with L/2
time points before the step and L/2 time points after the step.
The time points, at which the correlation coefficient is greater
than a certain threshold, c1, are labeled to be in the area of
interest. This step eliminates most of the true negatives, i.e.,
the time courses that do not have a step response. Next, we
perform a two-sample t-test at every time point in the area of
interest in order to locate the exact time when the potential
step occurred.

After locating the index of the step change in the time
course, a two sample t-test is performed on each point within
the regions of interest, with one group containing the time
points before the step change and the second group containing
the time points after the step change. A higher value of the t-
statistic denotes a significant difference in the intensities of
the two groups, that further implies the presence of a step
response, or an AO. The sign of the t-statistic obtained in this
step is also used for the reconstruction of the AO component,
that is described in the next section.

3.5. Reconstruction of the AO component

Once the AO component is detected in all the channels, a re-
construction step is implemented to estimate the color of the
AO component. Due to the sign ambiguity inherent in IVA,
the original color of the AO cannot be obtained by simple fu-
sion of the AO source components estimated in each channel.
Thus sign correction is implemented on the AO components
by making use of the time course of the AO. As mentioned in
Section 3.3, the time course of the AO component is likely to
have a increasing step function. Using this information and
assuming the object is an AO, we can correct the sign of the
AO component by flipping the components that have a de-
creasing step function. The sign of the t-statistic is used to
automatically detect the decreasing step function, i.e., if the
sign of the two-sample t-statistic is negative, the time course
is a decreasing step function. This approach is applied to flip
the component in each channel, such that the time course is
an increasing step function across all the channels.

4. EXPERIMENTAL RESULTS

The proposed method is tested on the AVSS2007 dataset [18]
and the CDW2014 dataset [19]. The AVSS 2007 dataset con-
sists of a parking scenario (Easy (E), Medium (M), Hard (H)
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Fig. 2: IVA model for videos. Each color channel is vectorized to form a row in the respective dataset of x[k]. The SCV,
si, represents the source components of an AO across all channels and the corresponding column in the mixing matrix, A[k]

i ,
represents the time course of the AO component, i.e., a step response.

and Night (N)), each of which has a abandoned vehicle, re-
spectively. Since the frame rate of the videos, 25fps, is quite
high, the frames are subsampled by considering every fifth
frame. We then perform order selection using the method de-
scribed in 2.2. The steps, IVA-GGD [10], back-reconstruction
as explained in Section 3.3 and detection of the step response
as explained in Section 3.4, are performed five times and the
best run is selected based on the t-statistic, i.e., the run with a
higher t-statistic. The list for the shape parameter, which are
selected based on the inference described in Section 3.2, are
β = [0.4, 0.7, 4]. The parameters, L and c1 are set to 200 and
0.9, respectively. The AO component is reconstructed as de-
scribed in Section 3.5. Our method fails to detect the AO only
in the case when the camera is shaking (PV-Medium), how-
ever, it provides a desirable performance in the cases when
the camera is still, which is the general case for video surveil-
lance. In the PV-Medium case, since the camera is shaking,
pixel values change constantly over time causing the variance
related to the AO component to decrease in the dimension re-
duction stage, hence it is not captured as part of the signal
subspace.

In order to demonstrate the improved performance due
to the consideration of an additional diversity— dependence
across multiple datasets— we compare IVA with ICA, since
ICA is limited to univariate data. The performance of the al-
gorithms is measured in terms of t-statistics computed on the
time course of the AO component, that represents a step re-
sponse. Thus, the superiority of the algorithm is based on
its ability to estimate a less noisy step response, giving a
higher value for the t-statistic. The ICA algorithm used for
comparison is the entropy rate minimization using a MGGD
model (ERM-MG) [20]. ERM-MG is referred to as ICA-
GGD, when the dimension of the sources set to 1, i.e., equiv-
alent to GGD and hence making it an ICA equivalent of IVA-
GGD. Table 1 demonstrates the t-statistic computed on the
time course of the AO, for both ICA-GGD and IVA-GGD on
the different videos.

Table 1: Comparison of ICA-GGD and IVA-GGD

Video M̂ ICA-GGD IVA-GGD
R G B

Abandoned Box 22 123.13 108.49 136.30 134.44
Tramstop 35 99.95 124.63 119.55 117.91
PV-Easy 23 287.15 92.42 90.13 91.27

PV-Medium 29 - - - -
PV-Hard 21 55.01 77.81 71.98 73.78
PV-Night 18 46.84 58.23 59.89 59.23

The results in Table 1 show that IVA performs better than
ICA for all cases except for the video PV-Easy. This might
be due to the improper estimation of the scatter matrix for the
SCV representing the AO, since the SCV in this case is highly
correlated. IVA-GGD implements the method of moments
technique to estimate the scatter matrix of the MGGD distri-
bution and if the condition number of the estimated scatter
matrix of the SCV representing the AO is high, the inversion
of the scatter matrix is inaccurate. This affects the IVA score
function that would lead to the sub-optimal performance of
IVA, in this case.

5. DISCUSSION

In this paper, we implemented a technique based on IVA to
detect AOs and demonstrated its superior performance to ICA
in complex environments, such as: crowd, occlusion and il-
lumination changes. The performance is measured using the
t-statistic computed on the time course of the AO component,
since the higher value of the t-statistic allows for easier detec-
tion. Thus, using the t-statistic, we demonstrated that the per-
formance increases for IVA since it takes an additional type
of diversity- dependence across color channels- into account.

The success of the proposed method raises several inter-
esting questions that can be explored in future work. The
IVA-GGD algorithm used in this paper exploits SOS and
HOS. However, the performance can be compared with algo-
rithms that exploit different types of diversity.
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