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ABSTRACT
In this paper, we consider a new discriminative approach

to the problem of audio-to-score alignment. We consider two
distinct informations provided by music scores: (i) an exact
ordered list of musical events and (ii) an approximate prior in-
formation about relative duration of events. We extend the ba-
sic dynamic time warping algorithm to a convex problem that
learns optimal classifiers for all events while jointly aligning
files, using only weak supervision. We show that the relative
duration between events can be easily used as a penalization
of our cost function and allows us to drastically improve per-
formances of our approach. We demonstrate the validity of
our approach on a large and realistic dataset.

Keywords: weakly supervised learning, score-following,
audio-to-score.

1. INTRODUCTION

This paper deals with aligning a temporal signal to its associ-
ated sequence of symbolic events. Given an audio recording
of a musical piece and its music score, the goal is to retrieve
the actual duration of each musical event, which may differ
from the one provided by the score.

Beyond its intrinsic interest for tracking live perfor-
mances, it is also a front-end for many musical applications
such as automatic accompaniment [1], audio editing [2], au-
tomatic transcription of music [3] or automatic turning of
score pages [4]. It is often called score-following [5, 6] when
performed in real-time.

Many state-of-the-art alignment algorithms are based on
the standard dynamic time warping (DTW) procedure [7, 8,
4]. Alignment algorithms use the duration information pro-
vided by scores together with models for each event, that
are pre-designed before running alignments. This step usu-
ally involves some ad hoc knowledge, like acoustical mod-
els [7, 8, 9, 10]. Few attempts use supervised training on fully-
labeled databases which are expensive to gather. For instance,
[11] trains a conditional random field, [12] builds classifiers
for each possible musical event using a support vector ma-
chine. Our work cannot be compared directly to those, as (i)

we only rely on weakly-supervised data, i.e., pairs of one au-
dio recording and its score; (ii) we perform both learning and
alignment steps simultaneously. To do so, we propose to learn
an optimal alignment function by minimizing a discriminative
square loss criterion.

This work shares deep links with discriminative cluster-
ing methods [13, 14]. This has recently attracted interest
for further applicative domains beyond music, e.g., action
localization [15], image co-segmentation [16], video co-
localization [17], named entity classification [18], or video-
to-text alignment [19]. Discriminative cost functions are usu-
ally prone to degenerate solutions. To get rid of them, [19]
arbitrarily suggests two penalizations, whereas we motivate
their use with the prior information encoded in music scores.
We show that these priors can be seamlessly expressed using
a proper representation of alignments.

Contributions The contributions of the paper are four-fold:
(i) We cast the set of alignments as a discrete set of matrices
Y , on which the dynamic time warping (DTW) algorithm can
be seen as a linear program solver. (ii) We propose the first, to
our knowledge, weakly-supervised discriminative approach
to the alignment problem. It learns an optimal DTW-based
alignment function while jointly aligning the inputs. We re-
lax the obtained problem into a convex program, and solve it
efficiently with the Frank-Wolfe algorithm. (iii) We cast the
information about relative duration of events provided by mu-
sic scores as two different priors. (iv) We evaluate our model
on a monophonic dataset, prove the benefits of the priors on
performances, and show the discriminative approach is robust
to intense white noise.

2. DISCRIMINATIVE APPROACH

2.1. Alignment task

Notations. Let us consider an audio recording X that is sam-
pled in T timestamps, thus X ∈ RT×p. We assume that X is
given with its score. A score consists of an ordered list of E
events in a dictionary of individual notes or chords (superpo-
sition of notes). Assuming there are K base notes, an event
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is a subset of {1, . . . ,K}. We represent each event e by a
binary indicator vector Φe ∈ {0, 1}K , that we concatenate in
a matrix Φ ∈ {0, 1}E×K . Such a matrix is called a template.
If the template sums to one along rows, it corresponds to a
monophonic score. Otherwise it corresponds to a polyphonic
one. Note that we do not make any of these assumptions when
we present our model, although experiments are only done in
the monophonic case. In this paper, we call alignment the
task of classifying timestamps of an audio recording X on
its template Φ. The goal is to find an alignment mapping (or
path) m from the timestamps {1, . . . , T} to its list of events
{1, . . . , E}.
Parametrization of alignments. In audio-to-score align-
ment, we assume that all events occur in order and no event
is skipped; so the path constraints are as follows: m is a
non-decreasing mapping from {1, . . . , T} to {1, . . . E} such
that (i) m(1) = 1, (ii) m(T ) = E, (iii) m(t+ 1) = m(t) + 1
or m(t+ 1) = m(t). An alignment mapping m can be repre-
sented through an alignment matrix Y of dimension T × E,
such that Yt,e is equal to 1 if m(t) = e and 0 otherwise. The
set of all these alignment matrices between an input of length
T and a template of length E is denoted by Y(T,E), or Y
when clear from the context.

DTW algorithm as a LP solver. An alignment procedure
usually starts by building a local cost matrix A ∈ RT×E

whose elementsAt,e measures the dissimilarity between each
pair of features Xt,. – the t-th row of X – and event e. Then,
the cost of an alignment m is defined as the sum of local
costs along the path:

∑T
t=1At,m(t) = Tr(Y >A). Given

any affinity matrixA, the dynamic time warping (DTW) algo-
rithm [20] uses dynamic programming to find the minimum
cost path argminY ∈Y Tr(Y >A) in O(TE) operations. Thus,
DTW is an efficient linear program (LP) solver over Y .

DTW cost function with Euclidian local distance. A com-
mon choice [10] of local distance At,e is the squared Euclid-
ian norm between a transform of input features Ψ(Xt,.) ∈
RK and template features τe ∈ RK representing the event e:
At,e = ‖τe − Ψ(Xt,.)‖22. With our notations, τe is the e-th
column of Φ, so an alignment cost equals:

T∑
t=1

At,m(t) =

T∑
t=1

‖e>m(t)Φ−Ψ(Xt,.)‖22,

where ek denotes the k-th standard basis vector of RE .
Let ‖.‖F denote the Frobenius norm. If we define ψ :
RT×p 7→ RT×K such that ψ(X) is the concatenation of
vectors Ψ(Xt,.), the DTW alignment cost reads:

min
Y ∈Y

‖Y Φ− ψ(X)‖2F . (1)

2.2. Weakly-supervised discriminative learning
Before any alignment is performed, templates Φ are usu-
ally designed with prior knowledge such as a synthesized

signal [4], or learned with supervision and annotated data
[12]. We rather want to perform alignment while optimiz-
ing our cost function (1) without supervision. To do so, we
follow the DIFFRAC framework [14] and learn an optimal
linear transform1 of the input features ψ(X) = WX , where
W ∈ RK×p, while keeping the templates Φ fixed. The
criterion we choose on W is to minimize the DTW cost func-
tion (1) plus a Tikhonov regularization with some λ ≥ 0. So
the joint estimation of Y and W reads:

min
W∈RK×p

min
Y ∈Y
‖Y Φ−XW‖2F +

λ

2
‖W‖2F . (2)

This problem leads to tractable convex relaxation thanks to
the joint convexity in W and Y of the objective function.
Beforehand, the unconstrained optimization in W is solved
using first order condition. Following [14, 16], this yields
the explicit expression: W = (X>X + TλIdT )−1X>Y Φ.
Plugging it back in Eq. (2) provides the following minimiza-
tion problem: min Y ∈Y Tr(Φ>Y >BY Φ) where B = IdT −
X(X>X+TλIdp)−1X>. This objective function is still con-
vex in Y but the set Y is discrete. To make the obtained
problem convex, we relax Y into its convex hull Y , and get a
quadratic program (QP):

min
Y ∈Y

Tr(Φ>Y >BY Φ). (3)

This relaxation is attracted to two kind of degenerate solu-
tions: the constant solution, which is a minimizer of any con-
vex relaxation invariant by column permutation [14, 13]; so-
lutions Y that assign all timestamps to the same class, as
noted by [15]. In our case, the constraints on Y linked to
the sequential structure get rid of some degenerate solutions.
However, as shown in the experimental section, as the number
of events E grows, the supervision gets weaker and Eq. (3)
gets plagued by solutions that are almost equal to the degen-
erate ones. To overcome this drawback, one needs to get rid
of the symmetries of our objective function. We propose to
do so by plugging the prior knowledge given by the score into
the cost function.

3. USING ADDITIONAL PRIOR KNOWLEDGE

Expected alignment. A music score induces a prior about
relative duration of each event e. Such information can be
encoded through an expected alignment Ȳ ∈ Y , that would
be obtained if the actual duration of every event was equal to
the duration in the score.

Global prior. We penalize the distance between a candidate
alignment Y and the expected one Y , using the squared sum
of absolute delays between the start times (onsets) of corre-
sponding events. This distance turns out to be used as a per-
formance measure of music-to-score alignment [6]. One can

1The extension to affine transforms ψ(X) = WX + 1b> where b ∈
RK , is straightforward and has been used in experiments.
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show it equals ‖Y L − Y L‖2F , with L the strictly lower tri-
angular matrix of size E × E with ones. It is a version of
the area loss introduced by [21], which turns out to be exactly
the area between the two warpings seen as binary matrices.
We call this term the global prior, as it promotes alignments
where the local distortions compensate themselves and the ac-
tual interpretation has globally the same shape as the score. In
musical terminology this is known as the rubato.

Local prior. Another idea is to penalize individually the dis-
crepancy between the actual duration and the expected dura-
tion of each event:

∑E
e=1(1>T Y.,e − 1>T Y .,e)

2 = ‖1>T Y −
1>T Y ‖22 where 1T ∈ RT is the vector with ones. This loss
could be interpreted as a Gaussian prior on individual dura-
tion. This local penalization promotes alignments where the
relative durations are correct for almost all events, except for a
few ones. In musicology, such events are called fermata [22],
where the interpret can unpredictably wait a very long time.

Complete cost function. Adding these two priors to the cost
function of Eq. (3) yields the following relaxed problem on Y
(µ, ν > 0 are arbitrary):

min
Y ∈Y

Tr(ΦY >BY Φ) +
λ

2
‖W‖22

+ µ‖(Y − Y )L‖2F + ν‖1>T (Y − Y )‖22.
(4)

Note that the priors do not increase the complexity as
Eq. (4) is still a QP. Such a problem cannot be solved in closed
form. But the DTW algorithm provides an efficient LP solver
max Y ∈Y Tr(AY ) on the set Y , hence on its hull Y . Con-
sequently, the QP can be efficiently solved with the Frank-
Wolfe algorithm [23, 24], a.k.a. conditional gradient descent
– refer to [15, Algorithm 1] for all implementation details. As
the problem is relaxed into Y , its solution Y ∗ might not be
a valid alignment in Y . From Y ∗, we can always deduce the
optimal classifiers W ∗ (see equation above). But rounding
the solution Y ∗ is needed to get a valid alignment Y .

Rounding with DTW. The first way to round, is to perform a
DTW alignment with the optimal classifiers W ∗. This con-
sists in solving the DTW problem of Eq. (1), which boils
down to the following LP: max

Y ∈Y
Tr(Φ>Y >XW ∗).

Rounding in ΦY . Following [15], a natural idea is to round
ΦY ∗ to the closest assignment matrix ΦY , in the sense of
the Euclidean norm. It amounts to solve: min Y ∈Y ‖Y ∗Φ −
Y Φ‖2F . Expanding the squared norm proves it also boils down
to an LP, in both monophonic and polyphonic settings.

4. EXPERIMENTS

Dataset and features. Our experiments are run on the
Finnish folk song dataset [25]. It is made of ∼ 48 hours
of music available in MIDI format (8614 songs). Our K
classes are the 44 notes appearing in the dataset, plus an ad-
ditional “silence” class. Audio files are synthesized from the

number of events E 10 15 20 30 50

mean length T 64 93 124 174 224
delay (s) 0.42 0.59 0.68 0.93 1.09

Table 1: Average onset delay for different song lengths T
(number of timesteps), without priors (µ = ν = 0).

available MIDI files, after having randomly modified the local
tempo, using the MIR toolbox [26]. That way, we know the
exact groundtruth alignment. A MIDI file encodes the score
and provides the expected alignment Y , which is different
from the groundtruth Ygt. We consider four different setups:
(1) Non-stretched data: Y = Ygt. (2) Rubato: tempo is alter-
natively sped up and slowed down. (3) Fermata: most notes
are played with the original duration except for a few whose
duration is increased. (4) A combination of (2) and (3). We
compute a 1200-dimensional spectrogram of the audio sig-
nal using half-overlapping windows of length 160ms. Then,
we bin it in 40 dimensions using the mel-scale filterbank,
as implemented in the MIR toolbox. Note that our method
similar results on the full spectrogram. Songs are split into a
train, validation and test sets. We use between 100 and 300
songs for training and between 200 and 500 songs for both
validation and testing.

Performance measure. All performances are measured with
the mean absolute delay between onsets, used in Sec. 3:
l(Y ) = 1

E ‖Y L − YgtL‖F , where E is the number of events.
This is a standard metric in audio-to-score alignment [6].

Need for priors. We first run experiments with no regulariza-
tion, no duration prior and no tempo stretching like in [15], by
setting λ = µ = ν = 0. We use 300 full songs that we split
into shorter signals of a fixed length T . Alignment results for
various values of T are presented in Table 1. Performances
clearly deteriorate as the length of signals increases. Indeed,
the set Y has more and more symmetries: the objective is at-
tracted by degenerate solutions [15]. This situation calls for
our additional priors so as to work on real-world songs.

Rubato performance. We compare the separate effect of the
global and the local prior in Eq. (4) in the Rubato setting. We
consider 100 songs for training, 200 for testing and 200 for
validation. As a baseline, dashed curves (Train / Val / Test
MS) depict the mean delay l(Y ) of the score Y . In Fig. 1a
(left), the rounding in ΦY has the same performance as the
dashed curve for large enough µ. In this case, Eq. (4) consists
in minimizing a well-conditioned quadratic form; so Y ∗ is
already in Y and the rounding procedure has little effect. On
the contrary, Fig. 1a (right) shows that for large ν, our method
gets above the dashed baseline; indeed, the quadratic form it
minimizes is ill-conditioned (low rank). In Fig. 1a (left), for
large µ, the optimal Y ∗ is almost equal to the score Y , as
explained above. In that case, the DTW rounding procedure
solves the alignment problem with classifiers W learned on
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(a) Effects of local and global prior in the Rubato setting.
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(b) Effects of local and global priors in the Fermata setting.

Fig. 1: Evaluation of separate priors in the Rubato and Fermata settings.
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Fig. 2: Combined Rubato and Fermata setting. (a-b) Perf. as function of µ and ν on val. and test sets. (c) Robustness to
additive white noise and comparison with a change-point detection algorithm.

Y . In this rubato setting, this method works better. We recall
that rubato means tempo fluctuations around its average. As
a result, the average delay between the score and the input is
low. Therefore, learning a model on the slightly faulty align-
ment Y provides a good classifier. On the contrary, the local
prior is not very robust against rubato – as expected.

Fermata performance. In the Fermata setting, the perfor-
mances of our approach are depicted in Fig. 1b and compared
with the same baseline as Fig. 1a. We have also run experi-
ments with respectively µ = 0 and ν = 0 but these are off
the charts. For the ν parameter, a clear trade-off appears, and
when properly adjusted our method outperforms other base-
line. Contrary to the rubato experiment, the global prior does
not help. The best performance is for large µ, for which the
predicted alignment Y sticks to the expected one Y .

Combined performance. In the mixed setting depicted in
Fig. 2(a-b), we observe a trade-off between the local and
global priors. When properly adjusted, our method with the
two priors outperforms all other baselines.

Robustness to noise. We consider data that have been
stretched both with Fermata and Rubato, and assess the
robustness of our approach against a white noise, up to a very
intense level. We add to the synthesized signals white noise
whose intensity is controled through the ratio between the
standard deviation of the noise σ and the mean absolute value

of the signal. We use our approach on 300 training songs,
validate µ and ν on 250 and test on 250. Fig. 2(c) compares
the performance of our method with a change-point detection
baseline (CPD). This algorithm detects changes in the mean
of a homoscedastic Gaussian process – refer to [27, 28] for
details; it knows the number E of events but is unaware of the
redundancy of notes. Removing the class information in our
algorithm makes it equivalent to this CPD. So this baseline
shows our algorithm do benefits from class redundancy.

5. CONCLUSION

We have described a discriminative and weakly-supervised
approach for audio-to-score alignment. Our method relies on
the estimation of individual classifiers for each of the possi-
ble notes, and corresponds to the optimization of the DTW
cost function. This step is achieved by the minimization of
a convex and quadratic objective function that can be solved
efficiently using a conditional gradient algorithm. The ex-
periments run in the mono-instrument monophononic setting
are very promising and show the robustness of the method to
tempo deformation as well as white noise. Our method can
be used in the polyphonic setting with no modifications. It
can also handle performances with structural differences (like
skips) by removing some path constraints on Y , as in [29].

2487



6. REFERENCES

[1] C. Raphael, “A Bayesian network for real-time musical
accompaniment,” in Adv. NIPS, 2001.

[2] R. Dannenberg, “An intelligent multi-track audio edi-
tor,” in Proc. ICMC, 2007.

[3] V. Emiya, R. Badeau, and B. David, “Multipitch estima-
tion of piano sounds using a new probabilistic spectral
smoothness principle,” IEEE Trans. on ASLP, vol. 18,
no. 6, pp. 1643–1654, 2010.

[4] A. Arzt, G. Widmer, and S. Dixon, “Automatic page
turning for musicians via real-time machine listening,”
in Proc. ECAI, 2008.

[5] N. Orio, S. Lemouton, and D. Schwarz, “Score follow-
ing: State of the art and new developments,” in Proc.
NIME, 2003.

[6] A. Cont, D. Schwarz, N. Schnell, and C. Raphael,
“Evaluation of real-time audio-to-score alignment,” in
Proc. ISMIR, 2007.

[7] M. Meinard, F. Kurth, and M. Clausen, “Audio match-
ing via chroma-based statistical features.,” in ISMIR,
2005, vol. 2005, p. 6th.

[8] S. Dixon and G. Widmer, “MATCH: A music alignment
tool chest.,” in Proc. ISMIR, 2005.
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