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ABSTRACT
In this work we present a novel scheme for load manage-
ment in microgrids based on stochastic scheduling of loads
under risk-limiting constraints. When trying to enforce ad-
equate power supply in a microgrid, the volatility of renew-
able resources such as wind energy has to be considered. In
the risk of inadequate power supply, loads have to be sched-
uled, which can be achieved by directly controlling individ-
ual loads or by setting pricing incentives to encourage ben-
eficial behavior of the customers. A common drawback of
conventional methods lies in the need of sophisticated con-
trol strategies and a significant amount of real-time signaling
exchange between the microgrid and the central control unit.
To address these issues, we propose a scheme that does not
require a direct control of individual loads. Our method relies
on sorting the appliances in the network into groups, and al-
lowing these groups to schedule themselves stochasticallyac-
cording to broadcasted scheduling probabilities. In this paper,
we propose an optimization problem to determine these group
scheduling probabilities, as well as for choosing the best uti-
lization of conventional generators, in a day-ahead planning
scenario of an isolated microgrid. Using an outage-risk limit-
ing constraint, we control the risk of inadequate power supply
causing network outages. The proposed scheme can be eas-
ily implemented with unidirectional communication from a
central control unit via simple broadcast messages.

Index Terms— Microgrids, renewable energies, risk-
limiting dispatch, economic dispatch, convex optimization

1. INTRODUCTION

The way in which electric power is generated and electrical
grids are operated has experienced a significant paradigm
shift in recent decades. Renewable energy resources have
been integrated into the grid to increase its overall environ-
mental compliance. Due to the volatile and mostly non-
controllable nature of these resources, such as wind and solar
energy, additional challenges for the reliability and economic
operation of the power system arise. For example, additional
uncertainties are caused by the need for intermediate storage,
consumer participation in the market, and clustered operation
in potentially standalone microgrids. Addressing these chal-
lenges with advanced technologies in network monitoring,
communications and machine learning is an important sub-
ject of current research [1–4]. Smart microgrids are proposed

as a promising way to increase the grid flexibility and reli-
ability by decentralizing the energy generation. Meanwhile,
smart microgrids bring about additional advantages, such as
reducing carbon emissions and improving energy efficiency
by incorporating renewable sources, utilizing waste heat of
generators, and decreasing transmission distances. These
microgrids may operate in standalone mode or connected to
the main grid [5, 6]. The capability of standalone operation
is essential for parts of the power grid. The reasons for this
are manifold, such as reliability requirements or geograph-
ical circumstances on islands and in remote locations. A
promising way to ensure the adequacy of generated power [1]
is to schedule the service of loads, which are appliances
that require electrical power, in the microgrid. This can be
achieved by a hierarchical and centralized control structure or
by enabling the consumer to participate in demand side man-
agement and setting incentives for beneficial behaviors [7,8].
Finding an optimal plan of scheduling these loads is a topic
of current interest in microgrid control research. However,
the proposed approaches typically require either one of the
following: A central controller has direct access to individual
loads and can control them, or the number of customers that
actively participate in the market and respond to incentives is
sufficiently large [9–11].

Both requirements can cause significant communication-
and computation overhead. Optimal power flow computation
in a power grid that implements renewable energy sources
and controllable loads leads to a nonlinear mixed-integer
optimization problem. Heuristic solution approaches, based
on load scheduling or incentive-based strategies, have been
widely investigated, e.g. [7–10]. The common drawback of
these methods lies in the need of sophisticated control strate-
gies and a significant amount of real-time signaling exchange
between the microgrid and the central control unit.

In this paper, we put forward a centralized strategy that
does not require the central controller to have direct real-time
access to the individual loads, and thus greatly decreases the
amount of signaling required. Our proposed scheme relies
on sorting the appliances in the network into groups, based
on their average energy consumption. Individual devices are
scheduled stochastically, using specific scheduling probabil-
ities. These probabilities are computed by a central control
unit for all groups of appliances and broadcasted over the net-
work. The central controller only needs to know the number
of appliances in each group, and their respective average en-
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ergy consumption at certain times of the day. The schedul-
ing probabilities for each appliance in the same group are the
same. Distributing a list of scheduling probabilities for all
groups in the network only requires unidirectional signaling.
For example, broadcast signals from the central control unit
could be used. In practical scenarios, the ability to receive
such broadcast messages could be implemented easily, due to
the increasing capabilities of smart meters and the connected-
ness of electric vehicle loading stations and industrial devices.
An additional benefit of using this approach is that privacy
concerns are respected, because appliances are not controlled
individually. Our scheme aims to optimize the scheduling
probabilities for multiple timeslots in a day-ahead scheduling
scenario.

To the best of our knowledge, the system model and load
scheduling method in this work has not been discussed in lit-
erature. Stochastic scheduling is mostly referred to in context
of the stochastic nature of renewable energy sources [12–14],
but not in the context of serving loads in a stochastic way.

The contributions of this paper are summarized in the fol-
lowing: A novel system model for the described scenario
with volatile renewable energy sources and stochastic load
scheduling is defined. A stochastic optimization problem for
computing the optimal scheduling probabilities under risk-
limiting constraints is formulated and solved using a proposed
iterative optimization approach. The practicality of the ap-
proach is demonstrated in a microgrid setup.

The remainder of the paper is organized as follows: We
provide the mathematical model of the considered microgrid
scenario in Section 2. The corresponding stochastic optimiza-
tion problem is formulated in Section 3, where a computa-
tionally efficient iterative optimization algorithm is proposed.
The microgrid simulation to demonstrate the feasibility ofthe
approach is discussed in Section 4. A summary of the results
along with a discussion of further research prospects is pro-
vided in Section 5.

Notation: We useN (µ, σ) to indicate a normal distribu-
tion with meanµ and standard deviationσ, andB(n, p) for a
binominal distribution withn trials and success probabilityp.
Furthermore, the normalized cumulative normal distribution
function is indicated asQ(z) = 1√

2π

∫ z

−∞
e−y2/2dy.

2. SYSTEM MODEL

In our proposed microgrid system model several compo-
nents, such as renewable energy sources and conventional
generators, are implemented. We assume a standalone op-
eration of the microgrid, where it is not possible to com-
pensate inadequate power supply with resources from the
main grid. The microgrid containss (s = 1, 2, . . . , S) con-
trollable generators with power outputPs(αs,t) at timeslott
(t = 1, 2, . . . , T ). The magnitude of the output power is a lin-
ear functionPs(αs,t) of the control parameter0 ≤ αs,t ≤ 1,
with αs,t = 0 andαs,t = 1 indicating minimal and maximum
utilization, respectively. The total cost generated by utilizing
generators at levelαs,t is denoted by the known monoton-
ically increasing functionCs(αs,t). We define the sum of

available power generated from wind turbines at timeslot
t as Λt. Obviously this power source is non-controllable,
and the forecast may be inaccurate. Since the probability
density function ofΛt can be modeled as a normal distri-
bution [15, 16], we denoteΛt ∼ N (λt, νt), whereλt and
νt represent the corresponding mean and standard deviation,
respectively. A similar framework can be used for other re-
newable energy sources, such as solar energy. The portion of
the generated load at timeslott which cannot be controlled is
denoted asMt.

The controllable groups of loads are defined as follows:
Let L̃k,t denote the average load created by an appliance in
groupk (k = 1, 2, . . . ,K) at timeslott. Groupk contains
Nk appliances in total. An appliance, in timeslott, acti-
vates itself with a probability equal to the scheduling prob-
ability of its groupk, which in the following is denoted as
pk,t. These scheduling probabilitiespk,t are broadcasted to
all appliances in all groupsk. If each appliance is scheduled
with a probabilitypk,t, the probability density function of the
total sum loadLk,t created by this group follows a binomi-
nal distribution withLk,t ∼ B (Nk, pk,t). In the following,
we assume thatNk, the number of appliances in groupk,
is sufficiently large to be approximated by the normal dis-
tribution Lk,t ∼ N (µk,t, σk,t) with µk,t = L̃k,tNkpk,t and
σ2
k,t = L̃2

k,tN
2
kpk,t(1 − pk,t), using the de Moivre-Laplace

Theorem [17]. For anypk,t < 1, the service of a customer
is delayed, which requires some form of financial compen-
sation. This customer compensation cost is increasing with
probability of not scheduling(1− pk,t), and is in the follow-
ing denoted asCk(pk,t). In the remainder of this section, we
consider a particular fixed timeslot, and thus simply drop the
time indext in the subscript.

In order to limit the risk of inadequate power supply,
which may cause power outage events, a risk-limiting con-
straint has to be incorporated. This constraint is used to
guarantee that the probability of the total generated power
exceeding the total load is above a predefined thresholdη,
which therefore reflects the non-outage probability. We re-
mark that the event that in a particular timeslot the total
generated power exceeds the required power supply is a less
critical problem than the opposite case, because microgrids
with renewable energy sources typically have energy storage
capabilities [9,18]. LetC denote the sum of all deterministic
powers and loads in the network, which is specified in the
following section. In this case, the risk-limiting constraint
takes the form of

Pr

(

∑

k

Lk − Λ ≤ C

)

≥ η (1)

whereη denotes the non-outage probability. SinceLk andΛ
are independently normal distributed, we have

∑

k Lk −Λ ∼

N
(

∑

k µk − λ,
√

∑

k σ
2
k + ν2

)

. Therefore, the probability

in (1) can be written as

Q

(

C −
∑

k µk + λ
√

∑

k σ
2
k + ν2

)

≥ η. (2)
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Usingµk = L̃kNkpk andσ2
k = L̃2

kN
2
kpk(1− pk), we obtain

Q−1(η)

√

∑

k

L̃2
kN

2
kpk(1− pk) + ν2+

∑

k

L̃kNkpk ≤ C+λ.

(3)

3. SCHEDULING OPTIMIZATION

The optimization of the scheduling probabilities is carried out
as an economic dispatch problem, which aims to minimize the
total network utilization cost. This problem has been studied
extensively in the context of microgrids, see e.g. [18–20].We
implement the constraint limiting the outage risk as shown in
Eq. (3). The proposed outage risk limiting economic dispatch
problem can be written as:

min.
pk,t,αs,t

∑

t

(

∑

k

Ck(pk,t) +
∑

s

Cs(αs,t)

)

(4a)

s.t. Q−1(η)

√

∑

k

L̃2
k,tN

2
kpk,t(1− pk,t) + ν2t

+
∑

k

L̃k,tNkpk,t +Mt +Ht−1

≤
∑

s

Ps(αs,t) + λt ∀t (4b)

|αs,t − αs,t−1| ≤ rs∆t ∀s, t (4c)

0 ≤ αs,t ≤ 1 ∀s, t (4d)

0 ≤ pk,t ≤ 1 ∀k, t (4e)

In this problem, Eq. (4a) represents the total generated cost
that has to be minimized. We assume convexity of the func-
tions Ck(pk,t) and Cs(αs,t). The outage-risk limiting con-
straint is formulated in Eq. (4b), which for a high non-outage
probability thresholdη ensures the adequacy of generated
power, according to our derivations in Eqs. (1)-(3). The
parameterHt−1 =

∑

k L̃k,t−1Nk(1 − pk,t−1) in Eq. (4b)
represents the sum demand of all controllable loads that have
not been scheduled in the previous timeslot, and which are
scheduled in the current timeslot. Ramping ratesrs for con-
trollable generators are considered in Eq. (4c), where∆t is
the duration of one timeslot. Eqs. (4d) and (4e) restrict the
optimization parameters to their minimum and maximum
bounds.

The risk-limiting constraint Eq. (4b) is a concave func-
tion of the optimization variablespk,t, because the function
φ(pk,t) = pk,t(1− pk,t) is concave and the square root func-
tion is concave and nondecreasing. Therefore, optimization
problem (4) is nonconvex and cannot be solved easily. In
the following, we introduce an iterative inner approximation
technique based on the iterative Convex-Concave procedure
[21–25] to approximatepk,t andαs,t for eachk and t over
multiple iteration stepsi = 1, . . . , I, whereI is the total num-

ber of iterations. Toward this aim, we define the function

f (pk,t) =

√

∑

k

L̃2
k,tN

2
kpk,t(1− pk,t) + ν2t . (5)

The derivative off (pk,t) with respect topk,t is given by

g (pk,t) =
d f (pk,t)

d pk,t

=

∑

k L̃
2
k,tN

2
k

(

1
2 − pk,t

)

√

∑

k L̃
2
k,tN

2
kpk,t(1− pk,t) + ν2t

. (6)

Using an initial pointp̂(i−1)
k,t , we can compute the first-order

Taylor approximation off (pk,t) aroundp̂(i−1)
k,t as

f̂
(

pk,t, p̂
(i−1)
k,t

)

= f
(

p̂
(i−1)
k,t

)

+ g(p̂
(i−1)
k,t )

(

pk,t − p̂
(i−1)
k,t

)

.

(7)
Using (7) in the outage-risk limiting constraint (4b), problem
(4) can be reformulated as a convex optimization problem:

min.
pk,t,αs,t

∑

t

(

∑

k

Ck(pk,t) +
∑

s

Cs(αs,t)

)

(8a)

s.t. Q−1(η)f̂
(

pk,t, p̂
(i−1)
k,t

)

+
∑

k

L̃k,tNkpk,t +Mt +Ht−1

≤
∑

s

Ps(αs,t) + λt ∀t (8b)

|αs,t − αs,t−1| ≤ rs∆t ∀s, t (8c)

0 ≤ αs,t ≤ 1 ∀s, t (8d)

0 ≤ pk,t ≤ 1 ∀k, t (8e)

If the constraint (8b) is satisfied, then (4b) is also satisfied,

sincef̂
(

pk,t, p̂
(i−1)
k,t

)

≥ f (pk,t). The parameterspk,t and

αs,t are approximated over multiple iterationsi = 1, . . . , I as

follows: Firstly, a feasible point̂p(0)k,t is obtained. In references
[23–26] iterative feasibility search procedures have beenpro-
posed based on the iterative inner approximation technique
described above applied to the corresponding feasibility prob-
lems. This procedure can also be applied to find a feasible
point p̂(0)k,t of our problem (if it exists). In the case that such

a point p̂(0)k,t does not exist, a fundamental deficit of power
supply is present in the network, which cannot be handled
by the proposed approach. Secondly, problem (8) is solved
to obtainp(i)k,t andα(i)

s,t. This process is then repeated, using
the optimal pointpk,t of iteration i in the subsequent iteration

i + 1 as p̂(i)k,t, until a convergence criterion is met. A popu-
lar convergence criterion relies on the vanishing update rule,
i.e., the algorithm is stopped if|pk,t − p

(i−1)
k,t | ≤ ǫ ∀k, t and

|αs,t − α
(i−1)
s,t | ≤ ǫ ∀s, t for some small thresholdǫ. The

Convex-Concave procedure converges to a stationary point of
the original problem (4) [21, 25]. With the described proce-
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Table 1. Simulation Parameters

PMIN 1000 kW
PMAX 4000 kW
cost factors b = 40 $/(MWh)2

c = 10 $/(MWh)
ramping rater 0.3/h
Timeslot length∆t 1h
Number of iterationsI 10
Fixed loadH 2500 kW
Wind powerΛ see Fig. 1
Lk see Fig. 1
cost factors (in$/kWh) d1 = 0.2, e1 = 0.04

d2 = 0.2, e2 = 0.03
d3 = 0.2, e3 = 0.02

dure, it is possible to obtain the optimized scheduling proba-
bilities pk,t and the generator utilization factorsαs,t.

4. SIMULATION RESULTS

The parameters of a setup example for the microgrid simu-
lation are displayed in Table 1. The considered example of
a 12-hour cycle of varying group demandsLk,t and mean
wind powerλt is illustrated in Fig. 1. We assume that the
microgrid has one controllable generator, and its cost function
C(α) = bP (α)2(∆t)2+cP (α)(∆t) is a quadratic function of
the output powerP (α) = PMIN+α(PMAX−PMIN) [27,28],
wherePMIN andPMAX denote the minimum and maximum
output power of the generator, respectively. We model the
sum power of wind turbines as described in Section 2 as a
Gaussian process with a standard deviationνt, which is 5%
of its meanλt [15,16].

The cost function of scheduling probabilities is an increas-
ing quadratic functionCk(pk,t) = ∆t

∑

t

(

Lk,tdk(1− pk,t)
2

+ek(1− pk,t)), where(1 − pk,t) is the probability of not
scheduling. This represents the cost of compensation to the
customer, whose service is delayed for anypk,t < 1. Since
the cost function of controllable generators is also usually
modeled as quadratic or piecewise linear, it makes sense from
an economic standpoint to model the customer compensa-
tion accordingly. Three groupsk of controllable loads, i.e.
k = 1, 2, 3 are considered, that is commercial loads, plug-in
electric vehicle loads and residential loads. The total gen-
erated load by these groups, as well as the wind power, are
illustrated in Fig. 1. The timeframe under investigation is
t = 1, . . . , 12, representing the hours between 1 PM and
12 PM. The key performance criterion for the algorithm is
how well it can manage the tradeoff between scheduling loads
and regulating the power generator utilization, subject torisk-
limiting constraints. Fig. 2 shows this tradeoff, using theit-
erative optimization method (8), for the timeframe under in-
vestigation. It can be observed that the scheduling of loads
decreases whenever there is a risk of the power supply being
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utilization

inadequate. The algorithm selects, based on the defined cost
functions, an optimized set ofpk andα for each timeslot. The
practicality of this method for day-ahead planning is demon-
strated by the scheduling probabilities “recovering” to a high
level after the critical high-demand period between 4-7 PM.

5. CONCLUSION

An algorithm for stochastic load scheduling under outage-risk
limiting constraints in smart microgrids has been developed.
Load scheduling is performed by a central control unit which,
transmits a broadcast message with scheduling probabilities
to different groups of controllable applicances in the net-
work. We formulated an optimization problem for scheduling
probabilities and generator utilization based with the objec-
tive of economic dispatch. The volatile nature of renewable
energy sources and stochastic loads was accounted for with
an outage-risk limiting constraint. The feasibility of this
method for day-ahead planning in a medium-large sized mi-
crogrid with renewable and conventional energy generators
was demonstrated with a simulation.
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