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ABSTRACT as a promising way to increase the grid flexibility and reli-

In this work we present a novel scheme for load manageablility by decentralizing the energy generation. Meanghil
ment in microgrids based on stochastic scheduling of load8Mart microgrids bring about additional advantages, ssch a
under risk-limiting constraints. When trying to enforce ad-redycmg carpon emissions and Improving energy efficiency
equate power Supp|y ina microgrid’ the Vo|at|||ty of renew- by |nC0rp0rat|ng reneWab.le SOUrceS,_ U‘E|I|Z|ng. waste héat o
able resources such as wind energy has to be considered. 9gnerators, and decreasing transmission distances. These
the risk of inadequate power supply, loads have to be schedicrogrids may operate in standalone mode or connected to
uled, which can be achieved by directly controlling individ the main grid [5, 6]. The capability of standalone operation
ual loads or by setting pricing incentives to encourage bens essential for parts of the power grid. The reasons for this
eficial behavior of the customers. A common drawback o€ manifold, such as reliability requirements or geograph
conventional methods lies in the need of sophisticated coric@l circumstances on islands and in remote locations. A
trol strategies and a significant amount of real-time siggal Promising way to ensure the adequacy of generated power [1]
exchange between the microgrid and the central control unitS t0 schedule the service of loads, which are appliances
To address these issues, we propose a scheme that does Wt require electrical power, in the microgrid. This can be
require a direct control of individual loads. Our methodewl ~achieved by a hierarchical and centralized control streatn

on sorting the appliances in the network into groups, and alby enabling the consumer to participate in demand side man-
lowing these groups to schedule themselves stochastially 2gement and setting incentives for beneficial behavio&{7,
cording to broadcasted scheduling probabilities. In thjsgs,  Finding an optimal plan of scheduling these loads is a topic
we propose an optimization problem to determine these grouff current interest in microgrid control research. However
scheduling probabilities, as well as for choosing the beist u the proposed approaches typically require either one of the
lization of conventional generators, in a day-ahead ptapni following: A central controller has direct access to indival
scenario of an isolated microgrid. Using an outage-risktfim 10ads and can control them, or the number of customers that
ing constraint, we control the risk of inadequate power supp actively participate in the market and respond to incestise
causing network outages. The proposed scheme can be egéfficiently large [9-11].

ily implemented with unidirectional communication from a  Both requirements can cause significant communication-
central control unit via simple broadcast messages. and computation overhead. Optimal power flow computation

Index Terms— Microgrids' renewable energies' risk- in a power grld that imp|ementS renewable energy sources

limiting dispatch, economic dispatch, convex optimizatio ~ and controllable loads leads to a nonlinear mixed-integer
optimization problem. Heuristic solution approaches edas

on load scheduling or incentive-based strategies, have bee
widely investigated, e.g. [7-10]. The common drawback of
ﬁhese methods lies in the need of sophisticated contraéstra
ies and a significant amount of real-time signaling exckang
Stween the microgrid and the central control unit.

1. INTRODUCTION

The way in which electric power is generated and electric
grids are operated has experienced a significant paradig
shift in recent decades. Renewable energy resources ha
been integrated into the grid to increase its overall emviro In this paper, we put forward a centralized strategy that
mental compliance. Due to the volatile and mostly non-does not require the central controller to have direct tiead-
controllable nature of these resources, such as wind aad solaccess to the individual loads, and thus greatly decrehses t
energy, additional challenges for the reliability and emoic =~ amount of signaling required. Our proposed scheme relies
operation of the power system arise. For example, additionan sorting the appliances in the network into groups, based
uncertainties are caused by the need for intermediateggtpora on their average energy consumption. Individual devices ar
consumer participation in the market, and clustered ojpgrat scheduled stochastically, using specific scheduling foibba

in potentially standalone microgrids. Addressing thesa-ch ities. These probabilities are computed by a central cbntro
lenges with advanced technologies in network monitoringunit for all groups of appliances and broadcasted over the ne
communications and machine learning is an important subwvork. The central controller only needs to know the number
ject of current research [1-4]. Smart microgrids are predos of appliances in each group, and their respective average en
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ergy consumption at certain times of the day. The schedubvailable power generated from wind turbines at timeslot
ing probabilities for each appliance in the same group ae tht as A;. Obviously this power source is non-controllable,
same. Distributing a list of scheduling probabilities fdr a and the forecast may be inaccurate. Since the probability
groups in the network only requires unidirectional signgli  density function ofA; can be modeled as a normal distri-
For example, broadcast signals from the central contrdl unbution [15, 16], we denotd; ~ N (), v,), where ), and
could be used. In practical scenarios, the ability to rexeivi, represent the corresponding mean and standard deviation,
such broadcast messages could be implemented easily, dua#spectively. A similar framework can be used for other re-
the increasing capabilities of smart meters and the coadect newable energy sources, such as solar energy. The portion of
ness of electric vehicle loading stations and industrielats.  the generated load at timeskotvhich cannot be controlled is

An additional benefit of using this approach is that privacydenoted ag/;.

concerns are respected, because appliances are not lghtrol ~ The controllable groups of loads are defined as follows:
individually. Our scheme aims to optimize the schedulingLet L, ; denote the average load created by an appliance in
probabilities for multiple timeslots in a day-ahead schiedu  groupk (k = 1,2,..., K) at timeslott. Groupk contains
scenario. Nj, appliances in total. An appliance, in timeslgtacti-

To the best of our knowledge, the system model and loadates itself with a probability equal to the scheduling prob
scheduling method in this work has not been discussed in litability of its groupk, which in the following is denoted as
erature. Stochastic scheduling is mostly referred to inedn p, ,. These scheduling probabilities ; are broadcasted to
of the stochastic nature of renewable energy sources [12—14ll appliances in all groupk. If each appliance is scheduled
but not in the context of serving loads in a stochastic way. with a probabilitypy, ;, the probability density function of the

The contributions of this paper are summarized in the foltotal sum loadLy, ; created by this group follows a binomi-
lowing: A novel system model for the described scenarimal distribution withLy. ; ~ B (Ng,pk.:). In the following,
with volatile renewable energy sources and stochastic loa@e assume thadV,, the number of appliances in group
scheduling is defined. A stochastic optimization problem fois sufficiently large to be approximated by the normal dis-
computing the optimal scheduling probabilities under -risk tribution Ly, ; ~ N (1.1, 0%.c) With g+ = Ly, ; Nipk.; and
!|m|t|r_lg constraints is formulated and solved_usmg a psymb o2, = L? ,N2pr.(1 — pi.), using the de Moivre-Laplace
iterative optimization approach. The practicality of thi® a Theorem [17]. For anyy: < 1, the service of a customer
proach is demonstrated in a microgrid setup. is delayed, which requires some form of financial compen-

The remainder of the paper is organized as follows: Wesation. This customer compensation cost is increasing with
provide the mathematical model of the considered microgrighrobability of not schedulingl — py;), and is in the follow-
scenario in Section 2. The corresponding stochastic opéimi jng denoted as), (pr.1). In the remainder of this section, we

tion problem is formulated in Section 3, where a computagonsider a particular fixed timeslot, and thus simply drap th
tionally efficient iterative optimization algorithm is prosed.  tjme indext in the subscript.

The microgrid simulation to demonstrate the feasibilitytef In order to limit the risk of inadequate power supply,
approach is discussed in Section 4. A summary of the resul{gnicn may cause power outage events, a risk-limiting con-
along with a discussion of further research prospects is Prastraint has to be incorporated. This constraint is used to
vided in Section 5. o - guarantee that the probability of the total generated power
~ Notation: We use\ (u, o) to indicate a normal distribu- - exceeding the total load is above a predefined threshold
tion with meany. and standard deviation, andB(n, p) fora  \hich therefore reflects the non-outage probability. We re-
binominal distribution witm: trials and success probability — mark that the event that in a particular timeslot the total
Furthermore, the normalized cumulative normal distritnuti generated power exceeds the required power supply is a less

. .. . z 2
function is indicated ag)(z) = ﬁ e /2dy. critical problem than the opposite case, because micregrid
with renewable energy sources typically have energy séorag
2. SYSTEM MODEL capabilities [9, 18]. LeC' denote the sum of all deterministic

powers and loads in the network, which is specified in the
In our proposed microgrid system model several compofollowing section. In this case, the risk-limiting constia
nents, such as renewable energy sources and conventioit@kes the form of
generators, are implemented. We assume a standalone op-
eration of the microgrid, where it is not possible to com- Pr (Z Ly —A< C) >n 1)
pensate inadequate power supply with resources from the &

main grid. The microgrid contains (s = 1,2, . "_S) con- wheren denotes the non-outage probability. SidgeandA
trollable generators with power outph (s +) at timeslott

(t=1,2,...,T). The magnitude of the output power is a lin- are independently normal distributed, we havg Ly, — A ~

ear functionP, («, ;) of the control parametdy < o, <1, N <Zk e = A /Do o8+ ,/2)_ Therefore, the probability
with a; , = 0 andas ; = 1 indicating minimal and maximum in (1) can be written as
utilization, respectively. The total cost generated biizirig

0 (C—Zkumw) .-

generators at levela, ;. is denoted by the known monoton-
ically increasing functiorC,(a,+). We define the sum of NN B

@)
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Usinguy, = Ly Nypy ando? = L2 N2px(1 — pi), we obtain  ber of iterations. Toward this aim, we define the function

Q™' (n) \/Z LENZpi(1 —p) + 1+ LiNipy < C+A. fpri) = \/Z L3 Nipre(L=preg) + 7. (5)
k k k
©) The derivative off (py ;) with respect tgy, ; is given by
~d f(pre)
3. sC GO o Y
. HEDULIN PTIMIZATION =
_ Zk Li,tng (% - pk,t) ©)
The optimization of the scheduling probabilities is cadriit \/Zk Li,thfpk,t(l — Pra) + V]

as an economic dispatch problem, which aims to minimize the
total network utilization cost. This problem has been stddi Y
extensively in the context of microgrids, see e.g. [18-¥®.  Taylor approximation off (Pk.t) aroundﬁgjl) as

implement the constraint limiting the outage risk as shawn i '

Eq. (3). The proposed outage risk limiting economic dispatc <p,€7t,p](f;1)> =f (p,ﬁf;”) +a( ) <pk,t _ ﬁ,(f;l)) .
problem can be written as: ' ' ’ ' ™
Using (7) in the outage-risk limiting constraint (4b), plein
(4) can be reformulated as a convex optimization problem:

sing an initial pointﬁfﬂi;l), we can compute the first-order

min. Z (Z Cr(pr,i) + Z C,s(OésJ)) (4a)
t k s

Pk, t,Xs,t
p:niryl. Z <Z Cr(prt) + Z Cs(as,t)> (8a)
~ ,f,7( s,t
s.t. Q_l(ﬁ)\/z Li,tngpk,t(l —Z)kﬁt) +Vt2 t k . S
k st. Q') f (pk,tyﬁ;(;,til))
+ o Lt Nepr + My + Hi + > L Neprs + My + Hy_y
k

<D Polas) + a0 W (4b) <3 Pas) + M Vi (8b)
los,e — s pm1| S rsAt Vs, t (4c) ot — o go1| S TLAE Vst (8c)
0<as:<1 Vst (4d) 0<as,; <1 Vst (8d)
0<pr: <1 VEk,t (4e) 0<pr: <1 Vk,t (8e)

In this problem, Eq. (4a) represents the total generated co . . i . .
that has to be minimized. We assume convexity of the funcff the constralr&t (8b) is satisfied, then (4b) is also satisfie

. ; A(t—1
tions C(pr.¢) and Cs(cv;). The outage-risk limiting con- Since f (pk.,t:Pk,t >) > f(pks). The parameterp, , and
straint is formulated in Eq. (4b), which for a high non-owdag «; ; are approximated over multiple iterations- 1,...,I as

probability thresholdy ensures the adequacy of generatedygows: Firstly, a feasible point.’) is obtained. In references
power, according to our derivations in Egs. (1)-(3). The[23_26] iterative feasibility search procedures have lpgen
parametert; . = > Lg—1Nk(1 — pr¢—1) in EQ. (4b)  posed based on the iterative inner approximation technique
represents the sum demand of all controllable loads that hayiescribed above applied to the corresponding feasibiliipp

no:] bg‘i“;?“ﬁ?“'“ in iht? pr(elVitOUs tim@"’zgg which argms. This procedure can also be applied to find a feasible
scheduled in the current timeslot. Ramping rateor con- - (0) o

trollable generators are considered in Eq. (4c), whistds point p, (:)f our problem (if it exists). In the case that such
the duration of one timeslot. Egs. (4d) and (4e) restrict th@ pointp;) does not exist, a fundamental deficit of power

optimization parameters to their minimum and maximumsupply is present in the network, which cannot be handled
bounds. by the proposed approach. Secondly, problem (8) is solved

The risk-limiting constraint Eq. (4b) is a concave func- 0 Obta.'”P/(:,i a.ndagfi. This process is then repeated, using
tion of the optimization variables,. ., because the function the optimal poinpy. , of iteration i in the subsequent iteration
&(pr,t) = pr,+(1 — pg,¢) is concave and the square root func-i + 1 asﬁ,(g’l, until a convergence criterion is met. A popu-
tion is concave and nondecreasing. Therefore, optimizatiolar convergence criterion relies on the vanishing updas ru
problem (4) is nonconvex and cannot be solved easily. Ife. the algorithm is stopped ibr.: — pEf{”l < e Vk,t and
the following, we introduce an iterative inner approxiroati ’

(i—1)
technique based on the iterative Convex-Concave procedu@si —ay, | < € Vst for some small threshold The
[21-25] to approximatey. , anda. ; for eachk andt over CoNvex-Concave procedure converges to a stationary point o

multiple iteration steps =1, ..., I, wherel is the total num- the original problem (4) [21, 25]. With the described proce-
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Table 1. Simulation Parameters s -- -electr\cvehiilé)s «)

PI\/HN 1000 kW % e re‘sidemial Ly .
PMAX 4000 KW g e <
cost factors b =40 $/(MWh)? @ :

¢ =10 $/(MWh) g Lo =
ramping rate- 0.3/h g i 3
Timeslot lengthA¢ 1h .§ é
Number of iterationd | 10 2 2000 %
Fixed loadH 2500 KW § 2
Wind powerA see Fig. 1 a B’ y
Ly see Fig. 1 B00 B m e R e
cost factors (irf/kWh) | d; = 0.2,e; = 0.04 23 48 Reay 8% 10012

d2 = 02, €y = 0.03

ds =0.2,e3 =0.02 Fig. 1. Loads of controllable groups and wind power

dure, it is possible to obtain the optimized scheduling prob
bilities p, + and the generator utilization factats ;.

o
0

o
o

4. SIMULATION RESULTS

o
IS

The parameters of a setup example for the microgrid simu-

scheduling probability p X

generator utilization factor o

lation are displayed in Table 1. The considered example of % | R ool by o2
a 12-hour cycle of varying group demands; and mean V| - = - electric vehicles (p,)
wind power )\, is illustrated in Fig. 1. We assume that the P 88 - = residential (p,)
microgrid has one controllable generator, and its costtfanc 1 2 3 4 5 6 7 8 9 10 11 12

timeslot

C(a) = bP(a)?(At)? +cP(N%)1\§At) is 1ag}tgadr?}ilcl\lfunction of
wﬁeor:tlgﬂtlﬁo:ggﬁlx d]:z not;tﬁépminimuﬁ angl [ri;leri]um Fig. 2. Comparison of scheduling probabilities and generator
. utilization

output power of the generator, respectively. We model the
sum power of wind turbines as described in Section 2 as a
Gaussian process with a standard deviatigrwhich is 5%  inadequate. The algorithm selects, based on the defined cost
of its mean\; [15, 16]. functions, an optimized set pf, anda for each timeslot. The

The cost function of scheduling probabilities is an increas practicality of this method for day-ahead planning is demon
ing quadratic functio® (py,;) = At Y-, (Lk,dk(1 — pr,e)? strated by the scheduling probabilities “recovering” taghh
+ep(1 —pr,t)), where(l — pg ) is the probability of not level after the critical high-demand period between 4-7 PM.
scheduling. This represents the cost of compensation to the
customer, whose service is delayed for apy < 1. Since
the cost function of controllable generators is also uguall
modeled as quadratic or piecewise linear, it makes sense fro

an economic standpoint to model the customer compensay, aigorithm for stochastic load scheduling under outdgle-r
tion accordingly. Three groups of controllable loads, i.e. |imjting constraints in smart microgrids has been devetope
k =1,2,3 are considered, that is commercial loads, plug-in 554 scheduling is performed by a central control unit which
electric vehicle loads and residential loads. The totak genyransmits a broadcast message with scheduling probesiliti
grated Ioaq by'these groups, as well as the.WInGI POWE, atg different groups of controllable applicances in the net-
illustrated in Fig. 1. The_ timeframe under investigation is,,qrk \We formulated an optimization problem for scheduling
t = 1,...,12, representing the hours between 1 PM andyopapilities and generator utilization based with theeobj

12 PM. The key performance criterion for the algorithm iSyye of economic dispatch. The volatile nature of renewable
how well it can manage the tradeoff between scheduling loadsnergy sources and stochastic loads was accounted for with

and regulating the power generator utilization, subjedsto 5, gytage-risk limiting constraint. The feasibility of ghi
limiting constraints. Fig. 2 shows this tradeoff, using the 1 athod for day-ahead planning in a medium-large sized mi-

erative optimization method (8), for the timeframe under in ¢q5rid with renewable and conventional energy generators
vestigation. It can be observed that the scheduling of loadg s s gemonstrated with a simulation.

decreases whenever there is a risk of the power supply being

5. CONCLUSION
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