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Abstract— It is well known that the Euclidean norm is 

sensitive to outliers; yet it is widely used for minimizing it is 
easy. Dictionary learning is no exception – the l2-norm allows 
for easy update of the basis/dictionary atoms. In this work, we 
propose a robust dictionary learning method that is based on 
minimizing the robust l1-norm. The ensuing optimization is 
solved using the Split Bregman approach. We apply the 
proposed technique to signal (energy and water) 
disaggregation and show that it excels over existing dictionary 
learning techniques (based on l2-norm).  

Keywords— Signal Disaggregation, Dictionary Learning, 
Robust Learning  

I.  INTRODUCTION  
In signal disaggregation the task is to separate the 

aggregate signal into its individual components. Consider 
the case of energy disaggregation. One can only (in a non-
intrusive fashion) record the total energy at the smart-meter; 
can we figure out what is the power consumption by 
individual appliances given the aggregate reading? The 
problem of water consumption disaggregation is similar. 
The total water consumption at regular instants of time is 
available to us; how can we find out the consumption of 
different sinks (e.g. cistern, tap, dishwasher, washer etc.)? 

The motivation for disaggregating total energy and total 
water are somewhat different. In energy disaggregation, one 
is interested in knowing the consumption of individual 
appliances so that one can make an informed decision about 
using them. It has been observed that about 10-20% of 
power can be saved by changing user’s behaviour [1] – [3].   
In water consumption disaggregation the motivation is 
slightly different. When the consumption is known, it would 
have help identify leaks and other faults.  

In both cases (energy and water) a linear mixing model 
is assumed, i.e. the aggregate signal is supposed to be a 
weighted sum of signals from individual components. Thus 
the task of disaggregation is to separate out the component-
wise signals. There are several approaches to address this 
problem. The earliest approach in energy disaggregation 
was based on finite state machines [4]. More modern 
approaches generalize [4] to Hidden Markov Models [5]. 
The dictionary learning framework applies to both energy 
[6] and water consumption disaggregation  [7].  

In this work we propose to improve the dictionary 
learning based techniques. Usually the dictionaries are learnt 

by minimizing the l2-norm; this is mainly because it has a 
closed form solution (easy to minimize). It is well known 
that the Euclidean norm is sensitive to outliers.  

The l2-norm minimization works when the deviations are 
small – approximately Normally distributed; but fail when 
there are large outliers. In statistics there is a large body of 
literature on robust estimation. The Huber function [8] has 
been in use for more than half a century in this respect. The 
Huber function is an approximation of the more recent 
absolute distance based measures (l1-norm). Recent studies 
in robust estimation prefer minimizing the l1-norm instead 
of the Huber function [9]-[11]. The l1-norm does not bloat 
the distance between the estimate and the outliers and hence 
is robust.  

The problem with minimizing the l1-norm is 
computational. However, over the years various techniques 
have been developed. The earliest known method is based 
on Simplex [12]; Iterative Reweighted Least Squares [13] 
used to be another simple yet approximate technique. Other 
approaches include descent based method introduced by 
[14] and Maximum Likelihood approach [15].  

In this work we propose robust dictionary learning, i.e. 
to learn the dictionary by minimizing the l1-norm. The 
problem is solved using the Split Bregman technique. We 
apply our proposed method to the signal disaggregation 
problems and show that it performs better than the standard 
(non-robust) dictionary learning.  

The paper is organized in several sections. Relevant 
studies are discussed in section II. The proposed method is 
described in section III. The experimental results are shown 
in section IV. The conclusions of this work are discussed in 
section V. 

II. LITERATURE REVIEW  

A. Disaggregation via Sparse Coding 
Kolter et al [6], assumed that there is training data 

collected over time, where the smart-meter logs only 
consumption from a single device only. This can be 
expressed as Xi where i is the index for an appliance, the 
columns of Xi are the readings over a period of time.  

For each appliance they learnt a basis, i.e. they 
expressed: 

  Xi = DiZi ,  i = 1...N      (1) 
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where Di represents the basis/dictionary and Zi are the 
loading coefficients, assumed to be sparse. This is a typical 
dictionary learning problem with sparse coefficients. In [6] 
the dictionary learning problem is solved via: 

  
min
Di ,Zi

Xi − DiZi F

2
+ λ Zi 1

    (2) 

Learning the basis constitutes the training phase. During 
actual operation, several appliances are likely to be in use 
simultaneously. They [6] make the assumption that the 
aggregate reading by the smart-meter is a sum of the powers 
for individual appliances. Thus if X is the total power from 
N appliances (where the columns indicate smart-meter 
readings over the same period of time as in training) the 
aggregate power is modeled as: 

 
X = Xi

i
∑      (3) 

By imputing (1) in (3), one can express (3) as –  

 

     

    (4) 

 

The loading coefficients can be solved using l1-norm 
minimization.  

  
X − DiZi

i
∑

F

2

+ λ Zi 1
i
∑    

 (5) 

Once the loading coefficients are estimated, the 
consumption for each appliance is obtained by: 

  X̂ i= DiZi ,  i = 1...N     (6) 

This approach for disaggregation was proposed for 
energy disaggregation initially [6]. Later it was shown that it 
could also be used for disaggregating water consumption 
[7]. In fact the linear mixing model assumed for energy 
disaggregation is not fully correct; it holds only for resistive 
loads but not for reactive loads – this is known from any 
book in first year electrical engineering. Most appliances 
consists of a composition of resistive and reactive loads.  

The linear mixing model holds for water consumption. 
Here the total consumption is a sum of the consumption 
from individual sinks.  

The model discussed here is the basic one. In both [6] 
and [7], other regularization terms were introduced to make 
the dictionary learning discriminative. This led to slight 
improvement in disaggregation results. 

B. Dictionary Learning 
In dictionary learning the goal is to learn an empirical 

basis from training data. The learnt basis may be used for a 
variety of tasks, e.g. inverse problems like denoising, 

reconstruction, etc. or for machine learning problems like 
classification and clustering.  

One of the earliest known works in dictionary learning 
was based on the Method of Optimal Directions [16]. Given 
a training data X, they learnt a dictionary D and the codes Z 
by solving, 

  
min

D ,Z
X − DZ

F

2
     (7) 

The learning consisted of alternately updating the dictionary 
/ codebook D and the coefficients Z by coding.  

  
Codebook update: Dk ← min

D
X − DZk−1 F

2
  (8a) 

  
Coding: Zk ← min

Z
X − DkZ

F

2
   (8b) 

In recent times, dictionary learning seeks to estimate a 
basis that can express the data in a sparse fashion. The 
problem is formulated as [17]: 

  
min

D ,Z
X − DZ

F

2
 s.t. Z

0
≤ τ    (9) 

KSVD is a neat way to solve (9). It uses OMP for the sparse 
coding step and updates one column of the dictionary at a 
time using SVD.  

However KSVD is slow, faster techniques for dictionary 
learning exists which are based on alternating minimization 
[18]. Such techniques directly solve the following, 

  
min

D ,Z
X − DZ

F

2
+ λ Z

1
    (10) 

Dictionary learning is a bilinear non-convex problem. 
There are some studies that prove convergence of KSVD 
type methods under some specific conditions; but in most 
cases these conditions are hard to satisfy.  

III. ROBUST DICTIONARY LEARNING 
The basic task of dictionary learning is to learn a basis 

given the training data. When Xi is the training data for ith 
device, we express it as: 

 Xi = DiZi       (11) 

Prior studies in dictionary learning are based on 
minimizing an l2-norm data mismatch – mainly because it is 
easy of minimization. The tacit assumption is that the 
mismatch follows a Normal distribution. In general one 
cannot make this assumption. If there are outliers the 
estimate from Euclidean norm minimization is skewed 
towards the outlier. We want a robust estimate. Therefore 
we propose to replace the l2-norm by an l1-norm data 
mismatch. When there is no requirement on the sparsity of 
the coefficients, this is expressed as follows: 

  
min
Di ,Zi

Xi − DiZi 1
     (12) 

Solving (12) may lead to a degenerate solution (this can 
happen to any alternating minimization based techniques – 

  

X = D1 | ... | DN⎡⎣ ⎤⎦

Z1

...
ZN

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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this is not an issue with the l1-norm). One may end up 
getting a very large value of D and very small values of Z so 
that the product remains finite; or the vice versa. In 
dictionary learning this problem is prevented by normalizing 
the columns of either D or Z. 

When one needs sparse coefficients from the dictionary, 
an additional l1-norm penalty on Z is to be added to (12). 

  
min
Di ,Zi

Xi − DiZi 1
+ λ Zi 1

    (13) 

Once the dictionary is learnt, we follow the procedure 
similar to [6]. The aggregate consumption (X) is assumed to 
the sum of consumptions from individual appliances (Xi’s); 
we express –  

 
X = DiZi

i
∑      (14) 

The individual loading coefficients are estimated by solving 
(15) – for dense coefficients and (16) for sparse coefficients.  

  
min

Zi

X − DiZi
i
∑

1

    (15) 

  
min

Zi

X − DiZi
i
∑

1

+ λ Zi 1
i
∑    (16) 

A. Deriving a solution for (12) 
We introduce a proxy variable: P=X-DZ. The problem 

(12) is therefore expressed as, 

 
  
min
D ,Z ,P

P
1
 s.t. X = DZ     (17) 

The unconstrained Lagrangian for (17) is, 

  
L = P

1
+ µT P − X + DZ( )    (18) 

The Lagrangian enforces strict equality; this is not 
required. One only needs to enforce strict equality at 
convergence. Therefore one can relax the equality constraint 
and use the Augmented Lagrangian instead. 

  
AL = P

1
+ µ P − X + DZ

F

2
   (19) 

The value of µ controls the relaxation; for small values 
the equality constraint between P and X-DZ is relaxed, and 
for high values it is enforced. One way to achieve this is to 
start with a small value of  µ, solve (19); increase the value, 
solve (19) again and so on.  

A more elegant solution is to introduce a Bregman 
relaxation variable (B) –  

  
min
D ,Z ,P

P
1
+ µ P − X + DZ − B

F

2
   (20) 

Instead of tinkering with µ, one can update B iteratively. 
The update is based on simple gradient descent and hence is 
very efficient. We only need to solve (20) once – for a fixed 
value of µ. Hence solving (20) is much less time consuming 

compared to (19). This approach is the so called Split 
Bregman technique. 

One can segregate (20) into the alternating minimization 
of the following sub-problems: 

  
P1:min

D
P − X + DZ − B

F

2
    (21a) 

  
P2:min

Z
P − X + DZ − B

F

2
   

 (21b) 

  
P3:min

P
P

1
+ µ P − X + DZ − B

F

2
   (21c) 

Solving P1 and P2 are straightforward – they are least 
squares problems and have closed form updates. They can 
also be solved using conjugate gradient based methods. Also 
P3 has a closed form update – soft thresholding [19].   

B. Deriving a solution for (13) 
To solve (13), we introduce the proxy variables as before 

and relaxing the equality constraint; this leads to: 

  
min
D ,Z ,P

P
1
+ λ Z

1
+ µ P − X + DZ − B

F

2
  (22) 

Alternating minimization of (19) leads to the following sub-
problems: 

  
P1:min

D
P − X + DZ − B

F

2
    (23a) 

  
P2:min

Z
λ Z + µ P − X + DZ − B

F

2
  (23b) 

  
P3:min

P
P

1
+ µ P − X + DZ − B

F

2
   (23c) 

We have already discussed the solutions for P1 and P3. 
In this case, P2 does not have a single step update; instead it 
needs to be solved using Iterative Soft Thresholding [19].  

C. Deriving a solution for (15)  
This (15) is the standard l1-norm minimization problem. 

Many solutions exists [12]-[15]. However, in this work we 
follow the Split Bregman approach we have been using so 
far to solve it. After introducing the proxy and relaxing the 
equality constraint we get, 

  
min

Z ,P
P

1
+ µ P − X + DZ − B

F

2
   (24) 

In this case (24), alternating minimization would require 
solving sub-problems (21b) and (21c). We have already 
discussed the solution for these. 

D. Deriving a solution for (16)  
Following the Split Bregman approach we have been using 
so far, we have –  

  
min

Z ,P
P

1
+ λ Z

1
+ µ P − X + DZ − B

F

2
  (25) 
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Alternating minimization of (25) would lead to two sub-
problems (23b) and (23c). Techniques for solving them have 
already been discussed.  

E. Updating the Bregman Relaxation Variable  
The final step is to update B for all the problems. This is 
done by simple gradient descent.  

 B ← P − X + DZ − B     (26) 

There are two stopping criteria for the Split Bregman 
algorithm. Iterations continue till the objective function 
converges (to a local minima). The other stopping criterion 
is a limit on the maximum number of iterations. We have 
kept it to be 200. 

IV. EXPERIMENTAL RESULTS 
We evaluate our proposed signal disaggregation 

framework on energy disaggregation and water consumption 
disaggregation.  

Our algorithm requires specifying the parameter λ and 
the hyperparameter µ. Some recent studies have shown that 
in a Split Bregman based technique, one can put  λ=1 and 
only tune the µ. We use the simple L-curve method [21]. 

A large-scale dataset contains nearly one million 
individual water use “events”; it was collected by Aquacraft 
from 1,188 residents in 12 study sites (such as Boulder, 
Colorado and Lompoc, California). For details, refer [20]. 
For this problem we use the F-measure as the evaluation 
metric [7]; it is defined as: 

F-measure = 2 x precision x recall / (precision + recall) 

Precision is the fraction of disaggregated consumption that 
is correctly classified while recall is the fraction of true 
device level consumption that is successfully separated 

It is customary to report the evaluation metrics on both 
the training and the testing dataset. In the tables, the top 
value is the training error and the bottom value is the testing 
error. DDSC represents the standard dictionary learning 
technique [6], [7] where as FHMM denotes Factorial HMM. 

Table. 1. Water Consumption Disaggregation 

Device DDSC FHMM Proposed – 
Dense Coeffn 

Proposed – 
Sparse Coeffn 

Toilet 56.44 
40.46 

53.51 
49.70 

55.32 
50.16 

59.98 
50.15 

Shower 72.37 
30.97 

58.29 
53.27 

70.19 
56.04 

75.76 
56.11 

Washer 49.13 
22.23 

21.19 
25.97 

45.52 
30.27 

55.30 
30.29 

*Training F-measure 
  Testing F-measure 

For energy disaggregation, we report results on the 
REDD [22], [23] dataset. The dataset consists of power 
consumption signals from six different houses, where for 
each house, the whole electricity consumption as well as 
electricity consumptions of about twenty different devices 
are recorded. The signals from each house are collected over 
a period of two weeks with a high frequency sampling rate 

of 15kHz. In the standard evaluation protocol, the 5th house 
is omitted since it does not have enough data. The 
disaggregation accuracy is defined as follows [22] –  

  

Acc = 1−
ŷt

( i) − yt
( i)

n
∑

t
∑

2 yt
t
∑

    (15) 

where t denotes time instant and n denotes a device; the 2 
factor in the denominator is to discount the fact that the 
absolute value will “double count” errors.  

Table. 2. Energy Disaggregation Results (in %) 

House DDSC FHMM Proposed – 
Dense Coeffn 

Proposed – 
Sparse Coeffn 

1 73.3 
50.0 

71.5 
46.6 

70.1 
52.1 

75.5 
53.0 

2 63.7 
55.7 

59.6 
50.8 

61.9 
55.7 

66.7 
56.3 

3 62.1 
40.8 

59.6 
33.3 

61.0 
43.2 

65.2 
43.9 

4 70.9 
55.6 

69.0 
52.0 

71.0 
59.8 

73.7 
60.1 

6 65.4 
58.9 

62.9 
55.7 

64.7 
60.0 

68.5 
60.2 

*Training Accuracy 
  Testing Accuracy 

In summary we see that robust dictionary learning 
indeed improves the disaggregation performance. Even with 
dense coefficients the testing performance is better than the 
standard dictionary learning (l2-norm) DDSC and FHMM; 
the training performance is slightly less than DDSC but 
better than FHMM; however this is not an issue since 
improving the performance on testing is more challenging. 
Introducing sparsity in the learned coefficients improve the 
performance on training set but the improvement on testing 
set is nominal compared to robust dense dictionary learning. 

V. CONCLUSION 
In this work we propose a technique for robust 

dictionary learning; instead of minimizing the popular 
Euclidean norm cost function, we minimize the sum of 
absolute deviations – the l1-norm. We test the performance 
on the problem of signal disaggregation and find that robust 
learning indeed improves performance for both water 
consumption disaggregation and energy disaggregation. 

Our proposed method is unsupervised. There is a 
plethora of work in supervised dictionary learning for 
computer vision problems. In future we would like to extend 
our work robust dictionary learning to incorporate 
supervised dictionary learning penalties. 
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