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ABSTRACT 
 
In blind equalization (BE) a cost function based on the fit 
between the equalizer outputs and the signaling constella-
tion is generally defined. To minimize such a cost function, 
standard gradient descent learning is commonly used. We 
exploit the idea of relative gradient (RG) learning to modify 
such standard Bussgang-type algorithms. Instead of one 
output each time, our method uses a sliding block of outputs. 
Our RG-based block Bussgang algorithms have faster con-
vergence than corresponding Bussgang algorithms based on 
the standard gradient.  
 

Index Terms— Relative gradient learning, Bussgang 
condition, blind equalization 
 

1. INTRODUCTION 
 
In blind equalization (BE) statistical or structural properties 
of payload data are used for finding the equalizer. BE tech-
niques can be quite useful, for example in pilot decontami-
nation in massive MIMO systems with time-division duplex 
(TDD) [1], [2]. Standard stochastic gradient descent is 
commonly used to minimize a cost function that is defined 
based on the fit of equalizer outputs to some known signal-
ing constellation property. A number of Bussgang-type al-
gorithms have been considered for BE, such as the constant 
modulus algorithm (CMA) [3], [4], [5], the generalized Sato 
algorithm (GSA) [6], [7], the multimodulus algorithm 
(MMA) [8] and the square contour algorithm (SCA) [9]. 
The vector CMA (VCMA) is a version of the CMA where a 
sliding block of equalizer outputs is processed each time 
[10], [11].  

BE schemes have also been designed using blind source 
separation (BSS) algorithms [12], [13], [14], [15], for use 
when the source symbols are independent and identically 
distributed (i.i.d.). This is a reasonable assumption when 
source coding is used for payload data. These algorithms 
also process a block of equalizer outputs at each time. In 
[16] the BSS algorithm was based on the relative gradient 
(RG). Our recent RG-BSS based scheme for BE in [15] 
gives better performance relative to standard Bussgang-type 
BE algorithms for i.i.d. source symbols. 

In this paper we propose to modify the Bussgang-type 
algorithms by using the RG instead of the standard gradient 
(SG) formulation. A block of outputs are used each time to 
update the matrix that contains the coefficients of the equal-
izer vector. Using the RG and forcing Toeplitz structure 
helps speed up convergence. Unlike BSS-based BE algo-
rithms using the RG, independence of source symbols is not 
required for our RG Bussgang equalizers. Our proposed 
algorithms yield faster convergence compared to standard 
Bussgang-type BE algorithms. 
 

2. BLIND EQUALIZATION MODEL AND 
BUSSGANG-TYPE ALGORITHMS 

 
2.1. Blind Equalization 

Consider a complex symbol sequence { ( )}s k  transmitted 
through an FIR complex channel. For symbol rate sampling, 
the output of the channel at time k  can be expressed as  
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where [ (0), (1),..., ( )]Th h h L h  is the channel response, and 
{ ( )}v k  is an additive white Gaussian noise sequence. The 
input source sequence is generally but not necessarily i.i.d.  

An M th-order FIR equalizer with impulse response 
[ (0), (1),..., ( )]Tw w w M w  is to be designed so that its out-

put 
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 �¦  approximates input ( )s k  to 

within a fixed delay d  and possibly a phase shift.  
 
2.2. Bussgang-Type Algorithms 

In conventional equalization, a popular cost function is the 
mean square error 2( ) [| ( ) ( ) | ]J E y k s k d � �w . Using 
stochastic gradient descent, the equalizer adaptation is given 
as 

 *
1 ( ( ) ( ))k kk y k s k dP�  � � �w w x ,  (2) 

where [ ( ), ( 1),..., ( )]T
k x k x k x k M � �x  is a vector of chan-

nel outputs at time k , of length 1M � .  Equation (2) is the 
well-known least mean square (LMS) update. 
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The Bussgang technique was first proposed in [17]. 
With no training symbol ( )s k d�  in (2), a memoryless es-
timator ( ( ))y kM  is used in place of ( )s k d� . The adapta-
tion (2) then becomes 

 1
*( ( ) ( ( )))k kk y k y kP M�  � �ww x .  (3) 

From (3), we have for the i -th equalizer coefficient,  

 � � *
1( ) ( ) ( , 0) ( ( )) ( )k kw ii w i y k y k x k i MP M� � � � d d .  (4) 

The expected value of any equalizer coefficient should tend 
to a constant under convergence. As a result, we have 

 * *[ ( ) ( ) ] [ ( ( )) ( ) ]E y k x k i E y k x k iM�  � .  (5) 

For a doubly-infinite equalizer it is easy to see that [18] 
 * *[ ( ) ( ) ] [ ( ( )) ( ) ]E y k y k m E y k y k mM�  � .  (6) 

A process { ( )}y k  is called a Bussgang process if it satisfies 
the condition (6), and the algorithm (3) is therefore called a 
Bussgang algorithm. If M for our FIR equalizer is not too 
small the Bussgang condition should be well approximated. 

In specific Bussgang-type algorithms such as the CMA, 
the GSA, the MMA and the SCA, the cost function can be 
written as ( ) [ ( ( ))]J E G y k w , and the equalizer adaptation 
has the form  
 *

1 ( ( ))k kk g y kP� � w xw , (7) 

where *( ( )) ( ( )) / ( )g y k G y k y k w w . Here the nonlinear “es-
timator”   is   ( ( ) ) ))) ( ( (y ky g y kkM  � . For example, 

( ( ))y kM  for the GSA is GSAcs( gn( ( )( )) )y k R y kM  , where 

GSAR  is a scaling constant, and csgn( ) sgn( ) sgn( )c a j b �  
for c a bj � . Upon convergence, the Bussgang condition 
of (6) is equivalent to  

 *[ ( ( )) ( ) ] 0E g y k y k m�  .  (8) 

 
3. BLOCK BUSSGANG ALGORITHMS WITH 

STANDARD GRADIENT 
 

In the standard Bussgang-type algorithms, the equalizer is 
applied to its input vector kx  that contains the current and 
past M channel outputs. Suppose we apply at each time k 
the equalizer kw  to a larger block of channel outputs 

[ ( ), ( 1),...., ( 1),..., ( 1)]T
k x k x k x k M x k P M � � � � � �x  of 

size P M� . The channel is assumed to be quasi-stationary 
over this observation period. The equalizer kw  convolved 
with this block will produce P  outputs. These P equalized 
outputs and the corresponding equalizer input sub-vectors in 

kx  can be used to generate an averaged version of the up-
date term in (7), i.e. 
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where [ ( ), ( 1),..., ( )]k i x k i x k i x k i M�  � � � � �x  are the 
length- ( 1)M �  vectors contained in kx , and ( ) ( )ky k i�  is 
the equalizer output using the current equalizer, i.e. 

( ) ( ) k i
k T

ky k i ��  w x . Note that ( )( ) ( )ky k y k . Equation (9) 
can be considered to be a general block version of the stand-
ard Bussgang algorithm.  

Define a ( )P P Mu �  Toeplitz   “equalizer  matrix”   con-
taining the equalizer coefficient vector as follows: 
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The adaptive equalizer coefficient vector update of (9) can 
be written in matrix form with two steps at each iteration:  
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Here ( ) ( )[ ( ), ( 1),..., ( 1)]T
k

k ky k y k y k P � � �y  is the block 
of P  outputs from the current equalizer, and 

( ) ( )( ) [ ( ( )), ( ( 1)),..., ( ( 1))]k k T
k g y k g y k g y k P � � �g y ; in 

the second line of (11) the Toeplitz structure of (10) is 
forced on 1

ˆ
k�W  by taking averages along the descending 

diagonals of 1
ˆ

k�W  after forcing the 1P�  diagonals on the 

upper right and lower left corners of 1
ˆ

k�W  to be zero. The 
resulting 1k�W  matrix contains the updated equalizer coeffi-
cients in each row.  

It can be shown that the first step of (11) is the standard 
stochastic gradient descent method to minimize the follow-
ing cost function of the equalizer matrix W : 
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where ( )kG y  is the vector with function ( )G  applied 
component-wise on the ky . According to methods for func-
tions of a complex matrix [19], the gradient (SG) of ( )L W  
can be calculated exactly as  

 * ( ) [ ( ) ]H
k kL E�  W W g y x ,  (13) 

and the standard stochastic gradient descent adaptation for 
W  becomes exactly the same as the first step of (11).  

Assuming that channel coherence time is long enough 
to allow size-P observation blocks, we found from simula-
tion that there is not much difference between standard 
Bussgang algorithms with 1P   and their corresponding 
block versions with 1P ! ; however, this block structure 
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turns out to be effective when another gradient, the relative 
gradient, is used instead in stochastic gradient descent. 
  

4. BLOCK BUSSGANG ALGORITHMS WITH 
RELATIVE GRADIENT 

 
4.1. Relative Gradient 

To minimize a scalar-valued cost function ( )L W , instead of 
searching over all small deviations GW  of fixed norm Car-
doso [16] considered small changes G  W W  proportion-
al to the current W , with  a  “small”  matrix.  Therefore    
is a measure of change GW  relative to W . With 
G  W W , the Taylor expansion of ( )L W  is [16], [19] 
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where , Trace{ }H M N N M . From this we find that if  

is in the direction opposite to * ( ) HL�W W W , the descent 

rate of ( )L W  is largest. This leads to the definition of the 
relative gradient (RG) for this matrix case as  

 *
( ) )()(R HL L � �W WW W W .  (15) 

Using the RG of (15), the gradient descent updates for ma-
trix W  become  
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The concept of RG is closely related to the natural gra-
dient (NG) in [20], [21], where the gradient direction de-
pends on the local Riemannian structure of parameter space 
and the small change is in the Euclidean tangent plane. In 
the context of BSS with the parameter space of invertible 
matrices, both the RG and NG give the same matrix updates. 
The RG provides an alternative to the standard gradient for 
gradient descent and is easy to apply, and we know from 
[15] that RG BSS yields good BE performance. Given these 
considerations, we will now proceed to explore use of the 
RG in block versions of the Bussgang algorithms. 
 
4.2. Block RG Equalizer Adaptation 

For the cost function ( )L W  in (12) of the equalizer ma-
trix, the derivation of the RG depends on how we define the 
small relative change GW  which is proportional to W . We 
may define G  W W  or G  W W  where  is a square 
matrix. We found from our simulations that the first case 
gives better performance, thus here we only consider the 
perturbations written as G  W W  to obtain the RG in this 
block version of our problem. In BSS, defining relative 
change this way also leads to a performance equivariance 
property [16], i.e. it is independent of the channel. 

For G  W W , using the SG * ( )L�W W  of (13), the 

Taylor expansion of (14) becomes   
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As a result, when  is aligned with [ ( ) ]HE g y y , the change 
rate is maximum, and the RG for a pre-multiplied matrix 
change can be written as 

 ( ) ( ) [ ( ) ] [ ( ) ]R H HHL E E�   W W g y y g y x W .  (17) 

Comparing (17) with the SG in (13), we see that the RG is 
just the SG multiplied by HW  on the right, as in (15). 

The stochastic relative gradient descent adaptation for 
matrix W  may be stated as  

 1

1 1

ˆ ( ) ,
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Since kW  is Toeplitz with the equalizer vector in each row, 
we can show that (18) has the computationally more effi-
cient equivalent form  

 1k k k kP
P

� � w w Ψ w ,  (19) 

where kΨ  is an ( 1) ( 1)M M� u �  matrix containing cross-
correlation terms from elements of ky  and ( )kg y . 

For our block RG Bussgang-type algorithm of (18), a 
stationary point is any matrix kW  such that 

[ ( ) ]H
kkE  g y y 0  holds. Compared with (11) that uses the 

SG, the RG ( ) H
k kg y y  that pre-multiplies kW  in (18) con-

tains the cross-correlation terms of the Bussgang condition 
in (8), and therefore we may say that deviation from the 
Bussgang condition is taken into consideration in the up-
dates of (18). When ( ) H

k kg y y  is large, the adaptation is far 
from the steady state, and the relative change to W  is large 
as a result; while when ( ) H

k kg y y  is small the value of W  
is adjusted with small relative change at each iteration.  

The RG ( ) H
kkg y y  contains the cross-correlation terms 

with time lag up to 1P� . The larger P  is, the more infor-
mation is used to update matrix W  at each iteration. How-
ever, the larger P  is, the more difficult it is to converge to 
the stationary point [ ( ) ]H

kkE  g y y 0 . As a result, the pa-
rameter P needs to be selected carefully to balance good 
performance and fast convergence. Moreover, channel co-
herence time needs to be taken into account. From our simu-
lation studies we have found that a reasonable choice is 

/ 2P M| . Output phase ambiguity is to be expected for the 
block RG CMA because it occurs in the CMA. However, 
with the block RG GSA, MMA or SCA phase ambiguity is 
reduced to a multiple of / 2S  that can be easily resolved. 
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5. SIMULATIONS 
 

We now give representative simulation results illustrating 
the relative performance of the block RG CMA and the 
standard CMA, as a special case of use of the RG in 
Bussgang BE. Here the g function in (7) is 

2
CMA( ( )) (| ( ( )) | ) ( )g y k y k R y k �  with CMAR  a scaling con-

stant. Similar results have been obtained for block RG ver-
sions of other standard Bussgang schemes. 

Consider a sequence of 64-QAM i.i.d. source symbols 
transmitted through a non-minimum phase order-4 FIR 
channel with SNR 15dB  as an example. The channel has 
response h = [0.28, 0.9816-0.1911j, 0.5756+0.2451j, 
0.3344-0.1385j, 0.1889+0.0625j, 0.0825] with one zero out-
side the unit circle. The equalizer is set to have order 

25M  , and is initialized with center tap 1 0.5 j�  and zero 
elsewhere. Results for four choices of the size of the equal-
izer output block are shown. We use inter-symbol interfer-
ence (ISI) in dB to measure the performance of the algo-

rithm, where ISI is defined as  
2

2

| |
ISI 1

max | |ii

i

i

c
c

 �¦  for 

the cascaded system * c h w . The ISI curves in Figs. 1 
and 2 are averages over 5 runs. 

For Fig. 1 the step-sizes were chosen to make the ISI 
after convergence approximately the same for all schemes. 
We see that when 5P  , the performance of the block RG 
CMA is worse than that of the standard CMA since not 
enough information is provided by ( ) H

kkg y y  to update W  
in (18). On the other hand for large P convergence becomes 
slow. Based on simulations with different P , it turns out 
that 12P   gives the best performance. When 12P  , it 
took about 42 10u  symbols for the block RG CMA to con-
verge, while the standard CMA needed 47 10u . When P  
increases further, for example when 20P   and 40P  , 
the convergence is slower. There is not much difference 
between 20P   and 40P  . Experiments with other chan-
nels and different choices for P  and M  also indicated that 

/ 2P M|  is a good choice. The ISI curve for the adaptation 
of (18) without the second step for Toeplitz structure is also 
shown in Fig. 1, for 12P  . From the figure it can be seen 
that the Toeplitz structure constraint is important, and helps 
speed up convergence.  

Next, we will see how different choices of equalizer or-
der M  (with / 2P M ) affects performance. Fig. 2 shows 
that when 8M   the block RG CMA performs worse than 
the standard CMA. There is not much difference between 
the standard CMA and the block RG CMA when 15M  ; 
while when 20M   and 25M  , the convergence of the 
block RG CMA is faster. We know that for the Bussgang 
condition to be well approximated, the equalizer should be 
long enough. As M  increases, the advantage of using the 
RG becomes more apparent. In practice, the order M  of the 
equalizer depends on the nature of the channel. Some 

knowledge of channel length and zero locations can be used 
to set a reasonable value for M, and we can expect that our 
block RG CMA will be more likely to perform better than 
the standard CMA.  

 
Fig. 1 ISI for CMA and block RG CMA with different P. 
64-QAM  i.i.d. source, SNR 15dB , 25M  . 
 

 
Fig. 2  ISI for CMA and block RG CMA for different equal-
izer order M ( / 2P M ). 
 

6. CONCLUSIONS 
 

Our new block RG Bussgang algorithms use a block of 
equalizer outputs at each iteration and enforce a Toeplitz 
condition for faster convergence. With the RG, the 
Bussgang condition appears more explicitly in the equalizer 
adaptation steps. Simulation results suggest that the block 
RG Bussgang algorithms offer faster convergence compared 
to their standard counterparts. While the block algorithms 
have a somewhat higher computational cost, our results 
suggest that the performance gains obtained are significant. 
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