
EFFICIENT ONE-VS-ONE KERNEL RIDGE REGRESSION FOR SPEECH RECOGNITION

Jie Chen†∗, Lingfei Wu‡∗, Kartik Audhkhasi†, Brian Kingsbury†, Bhuvana Ramabhadran†

†IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
‡Computer Science Department, College of William and Mary, Williamsburg, VA 23185, USA

chenjie@us.ibm.com, lfwu@cs.wm.edu, {kaudhkha, bedk, bhuvana}@us.ibm.com

ABSTRACT

Recent evidences suggest that the performance of kernel methods
may match that of deep neural networks (DNNs), which have been
the state-of-the-art approach for speech recognition. In this work,
we present an improvement of the kernel ridge regression studied in
Huang et al., ICASSP 2014, and show that our proposal is compu-
tationally advantageous. Our approach performs classifications by
using the one-vs-one scheme, which, under certain assumptions, re-
duces the costs of the one-vs-rest scheme by asymptotically a factor
of c2 in training time and c in memory consumption. Here, c is the
number of classes and it is typically on the order of hundreds and
thousands for speech recognition. We demonstrate empirical results
on the benchmark corpus TIMIT. In particular, the classification ac-
curacy is one to two percentages higher (in the absolute term) than
the best of the kernel methods and of the DNNs reported by Huang
et al, and the speech recognition accuracy is highly comparable.

Index Terms— large-scale kernel machines, one-vs-one multi-
class classification, random Fourier features, deep neural networks,
speech recognition

1. INTRODUCTION

The advent of deep neural networks (DNNs) substantially improved
classification performance in many artificial intelligence and pat-
tern recognition applications, speech recognition being one impor-
tant example. State-of-the-art speech recognizers are typically built
on a network of several hidden layers, with thousands of units per
layer [1, 2]. The success of DNNs is, in part, due to the afford-
able computational resources (memory and flops) spent on solving a
large-scale optimization problem, whose size is proportional to the
number of connections between the units.

Recent evidences suggest, however, that DNNs may not be the
only approach for achieving such a performance; kernel methods are
competitive. Two notable examples that demonstrate the matching
performance of kernel methods are the work by Huang et al [3] pub-
lished in ICASSP 2014 (which used a kernel ridge regression), and
the work by Lu et al [4] that was based on a form of kernel logistic
regression. Both works apply a mapping from frame-level speech
features to high-dimensional random Fourier features, which form a
low-rank kernel that reduces the notorious computational expenses
due to a fully dense kernel matrix.

A drawback of these methods is that a particularly large number
of random features are needed to achieve a stable and a compara-
ble performance. For a training set of size approximately 2M, the
work [3, 5] used 400K random features to show a matching classifi-
cation accuracy with that of the DNNs. Such a phenomenon may not

∗Both authors contributed equally to this manuscript.

be atypical given the argument made in [6]: In a low-rank approxi-
mate kernel, the rank (i.e., the number of random features) needs to
be linear in the number of training size in order to maintain a com-
parable generalization error with that of the nonapproximate kernel.

In this paper, we consider the one-vs-one classification scheme,
which substantially reduces the required number of random features
for achieving a similar performance. The rationale is intuitive: In
each subproblem the training size is only a portion of the whole
data. Although the method itself is standard and it has been applied
to support vector machines [7], we investigate in the context of ker-
nel ridge regression and we propose an improvement that improves
the efficiency of the computation. We also analyze that under cer-
tain assumptions, the training time and the memory consumption are
asymptotically only 1/c2 and 1/c, respectively, of those of the one-
vs-rest scheme, where c is the number of classes. Considering that a
speech recognition problem typically poses hundreds to thousands of
classes, the one-vs-one scheme is clearly appealing. Experimentally,
we demonstrate that this scheme achieves a slightly higher classifi-
cation accuracy than do the kernel method and the state-of-the-art
DNNs reported in [3].

We conclude the introduction by providing the details of the ker-
nel method on which our proposal is built.

1.1. Kernel Ridge Regression

The standard setting for binary classification is that given data
{(xi, yi)}i=1,...,n, where xi ∈ Rd and yi ∈ {±1}, find a function
f that minimizes the discrepancy between f(xi) and yi under cer-
tain regularity conditions. In the kernel approach [8, 9], let X ⊂ Rd

denote a set where data are drawn from and k : X×X → R denote a
positive-definite kernel function. For any k, there associates a repro-
ducing kernel Hilbert space Hk with inner product 〈·, ·〉Hk . Then,
the function f is sought fromHk to minimize the risk functional

L(f) =
n∑

i=1

V (f(xi), yi) + λ〈f, f〉Hk

where V denotes a loss function and λ ≥ 0 is the regularization. The
Representer Theorem [10] states that the minimizer is in the form

f(x) =

n∑
i=1

αik(x,xi), (1)

for some set of coefficients {αi}. When V is the squared loss
V (t, y) = (t − y)2, the vector of αi’s is simply the solution of the
linear system

(K + λI)α = y, (2)

whereK is the kernel matrix of elements k(xi,xj) and y is the vec-
tor of labels yi. Such a computation is nothing but the kernel ridge

2454978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

regression. Another well-known example of V (t, y) is the hinge loss
max{0, 1− ty}, which leads to the support vector machine.

1.2. Random Fourier Features Approximation

Kernel ridge regression is computationally challenging because the
n × n matrix K is fully dense. A straightforward solution of (2)
requires at lest n2 memory and O(n2)–O(n3) flops depending on
the linear solver one uses. A stream of research on kernel methods
approximates the kernel function k by some structures (e.g., low-
rank) such that the solution of (2) is less expensive (see, e.g., [11,
12, 13]). The random Fourier features method [12] approximates k
by

kRF(x,x
′) =

2

r

r∑
i=1

cos(ωT
i x+ bi) cos(ω

T
i x
′ + bi),

where r is the number of random features, each scalar bi is an iid
sample of Uniform[0, 2π], and each iid vector ωi comes from a dis-
tribution with density k̂, the Fourier transform of k in the Bochner
sense. Rahimi and Recht [12] showed a uniform convergence of the
approximation.

This method admits a more economic computation than directly
solving (2). Let z(x) be a row vector of elements

√
2/r cos(ωT

i x+
bi) for i = 1, . . . , r and let Z be a matrix stacking the rows z(xi)
for i = 1, . . . , n. Then, the prediction function f in (1) becomes

fRF(x) = z(x) · ZT (ZZT + λI)−1y

= z(x) · (ZTZ + λI)−1(ZTy). (3)

Hence, as oppose to solving an n × n system with K + λI in (2),
one solves only an r × r system with ZTZ + λI in (3).

1.3. Multiclass Classification

When the classification problem has c > 2 classes, a few approaches
adapting the preceding discussions exist. The approach in [3] con-
verts the problem into c binary classifications, in each of which the
task is to determine how likely a point x belongs to the class i as op-
pose to other classes, for i = 1, . . . , c. Specifically, let yi be a label
vector whose elements are +1 if the corresponding training points
belong to class i and −1 otherwise. Correspondingly, let the predic-
tion function (3), with subscript “RF” dropped for clarity, be named
fi(x). Then, the predicted class of x is argmaxi{fi(x)}.

The prescribed approach is named “one-vs-rest.” In what fol-
lows, we consider a more favored approach: “one-vs-one.”

2. ONE-VS-ONE MULTICLASS CLASSIFICATION

A drawback of “one-vs-rest” is that the number r of random fea-
tures needs to be particularly large for a matching performance with
DNNs. Experiments on TIMIT in [3, 5] allured to setting r =
400K, which is approximately 1/5 of the training size n. Whereas
theoretical guidance on the choice of r is rare, Dai et al. [6] ar-
gued that the generalization error of the random features method is
O(1/

√
r + 1/

√
n). This bound implies that r cannot be too small

compared with n for maintaining the predictive power. A linear re-
lationship is often desired.

One natural idea for reducing r, then, resorts to the “one-vs-
one” scheme, because the training size is amortizd by the number of
classes. This scheme converts the multiclass classification problem
into c(c − 1)/2 binary classifications, each of which uses only the

training points from a pair (i, j) of classes and trains a classifier that
votes between the two classes. Then, for any point, the class with
the largest vote is the prediction.

2.1. Algorithm

Since the “one-vs-one” scheme loops over all pairs (i, j), we index
the prediction function (3) by using ij (and same as before, removing
the subscript “RF” for clarity):

fij(x) = z(x)·βij with βij = (ZT
ijZij+λI)

−1(ZT
ijyij), (4)

where Zij is a matrix by stacking the rows z(xl) for all points xl

from class i or j, and yij is a vector whose elements are +1 if xl is
in class i and −1 otherwise.

If one naively forms ZT
ijZij and ZT

ijyij each time for a pair
(i, j), then much work is redundant. For example, if xl is in class
i, the row z(xi) appears c − 1 times, each for a different j. This
redundancy can be eliminated by observing that

ZT
ijZij = ZT

i Zi + ZT
j Zj and ZT

ijyij = ZT
i 1− ZT

j 1,

where Zi is a matrix by stacking the rows z(xl) for all points xl

from class i and 1 is a vector of all ones with a matching length.
Therefore, we propose precomputing

Ai := ZT
i Zi and gi := ZT

i 1

for all classes i. Then, (4) becomes

βij = (Ai +Aj + λI)−1(gi − gj). (5)

Because forming the linear systems (5) is much more expensive than
solving them, the saving in flops through such a simple rearrange-
ment is substantial.

Algorithm 1 summarizes the computations.

Algorithm 1 One-vs-one classification with random Fourier features
// Training

1: Generate random ωi and bi for i = 1, . . . , r
2: for all classes i do
3: Generate temporary Zi

4: Compute Ai = ZT
i Zi and gi = ZT

i 1
5: end for
6: for all pairs of classes i, j where i < j do
7: Compute βij = (Ai +Aj + λI)−1(gi − gj)
8: end for

// For a test point x
9: for all pairs of classes i, j where i < j do

10: Generate z(x)
11: Compute fij(x) = z(x) · βij

12: end for

2.2. Linear Solves

A straightforward method for solving (5) is Cholesky factorizations,
because the matrix is positive definite [14]. This approach requires
n3/3 flops for factorization and 2n2 flops for triangular solves.
Here, the notation n generically denotes the matrix size, which in
the case of (5) is equal to the number of random features.

It is yet often advantageous to use an iterative method to
solve (5) if the iterations converge rapidly. Two iterative meth-
ods with convergence guarantee for positive-definite systems are

2455

CG and GMRES [15]. Let k be the number of iterations, with
a subscript distinguishing the method. Without preconditioning,
CG requires O(kCGn

2) flops whereas a full GMRES requires
O(kGMRESn

2 + k2GMRESn) flops.
In theory, the number of iterations is tied to the condition num-

ber, the spectral gap, and the desired solution accuracy, but not the
size of the matrix. In practice, experience points to the observation
that full GMRES converges much more quickly than does CG, and
it also completes much faster than do Cholesky factorizations, for
a reasonable accuracy that does not deteriorate the prediction qual-
ity. The following table gives a flavor of the number of GMRES
iterations for one particular system (5) at 10K random features. Pre-
diction results verify that it suffices to set the tolerance to 1e-3.

Relative tolerance of solution accuracy
λ 1e-1 1e-2 1e-3 1e-4 1e-5 1e-6

1e-1 4 12 44 83 105 123
1e-2 4 12 48 111 158 196
1e-3 4 12 49 127 210 283
1e-4 4 12 49 131 228 316
1e-5 4 12 49 131 230 320
1e-6 4 12 49 131 230 320

2.3. Computational Costs, Part 1

We now analyze the computational costs of the proposed method
(Algorithm 1) and compare them with those of the standard kernel
ridge regression (cf. Section 1.1) and of the 1-vs-rest random fea-
tures method (cf. Section 1.2). The results are summarized in Part 1
of Table 1. Note that all the expressions in the table are in the big-O
sense.

The costs of the standard method are straightforward. For train-
ing, the computation is to construct the kernel matrix (O(dn2) time
and O(n2) memory) and to solve (2) with c different y’s. We use
T (n, c) to generically denote the time for solving an n × n system
with c right-hand sides. For testing on each point x, the computation
is to construct a vector of elements k(x,xi) in O(dn) time and to
multiply this vector with the c different α’s resulting from training
(with O(cn) time and memory).

Next, we consider the one-vs-rest random features method. For
training, the dominant computation is to generate the random num-
bers ωi and bi (in O(dr) time and memory), to construct the matrix
ZTZ (whose storage is O(r2)) and c different vectors ZTy (whose
storage is O(rc)), and to solve c linear systems indicated by (3) (in
T (r, c) time). Note that the construction of ZTZ and ZTy can be
more efficient than does the naive approach of generating the whole
matrixZ. The economic approach is to generate a temporary storage
Zi each time for a class i, compute ZT

i Zi and ZT
i 1, and accumulate

them to the correct memory location of ZTZ and ZTy. Such an
approach costs O(drn+ r2n+ c2r) time and O(maxi(rni)) tem-
porary memory, where ni denotes the number of points in class i.
For testing, it requires the storage of the random numbers ωi and bi
(withO(dr) cost) and the storage of the linear system solutions (with
O(cr) cost). Additionally, constructing z(x) takes O(dr) time and
multiplying z(x) to the linear system solutions takes O(cr) time.

Now, we analyze the proposed one-vs-one method. We use r̃
to denote the number of random features here. Most components of
the costs follow the same analysis as in the preceding paragraph, by
replacing r by r̃; hence, we discuss only the components that are
different. First, the number of linear systems are increased from c to
O(c2). Hence, the storage of the linear system solutions is O(c2r̃)
instead of O(cr̃), and the storage of the matrices is O(cr̃2) instead

of O(r̃2). Second, generating the O(c2) different systems (5) takes
O(dr̃n + r̃2n + c2r̃2) time, and obviously solving them takes
T (r̃, 1) · c2 time. Summarizing these differences we have the last
column of Part 1 of Table 1.

2.4. Computational Costs, Part 2

Two factors are not directly comparable in Part 1: the relative mag-
nitude of r and r̃; and the time cost T for varying matrix sizes and
numbers of right-hand sides. To allow for a deeper analysis, we
make the following assumptions:

1. The class sizes are balanced; i.e., ni = n/c for all i.
2. All linear systems are solved by using full GMRES and the

number of iterations is linear in the matrix size. In other
words, T (n, s) = εsn2 with ε < 1. Here, the number of
iterations is modeled as εn, where ε is expected to be � 1
(see, for example, the table in Section 2.2).

3. The number of random features is linear in the training size,
following the discussions at the beginning of Section 2.
Hence, we let r = δn with δ < 1; and together with As-
sumption 1, let r̃ = 2δn/c. Experimental results indicate
that δ is a moderate fraction of 1.

With these assumptions, Part 1 of Table 1 is translated to Part 2.
If one considers only the training set size n and ignores the other fac-
tors, all three methods fall in the notorious O(n3)-time and O(n2)-
memory regime for training. However, the significant computational
improvements brought about by the methods from left to right are
closely tied to the ignored factors ε � 1, δ < 1, and c � 1.
Comparing the leading terms in the training costs of the proposed
one-vs-one scheme with those of the one-vs-rest scheme, we see a
factor of c2 saving in time and a factor of c saving in memory.

2.5. Probability Estimates

As oppose to the prediction of label y, more important in a speech
recognition is the posterior probability distribution Pr(y = i | x),
because the probabilities are fed into a Viterbi decoding for finding
the best sequence of labels for an input utterance. To compute the
posterior probabilities, we follow the approach of Wu et al. [16].
First, we estimate the pairwise conditional probability µij(x) :=
Pr(y = i | y = i or j, x) from the prediction function fij(x),
based on a logistic mapping

µij(x) =
exp(αijfij(x) + βij)

1 + exp(αijfij(x) + βij)
. (6)

Here, the unknowns αij and βij are computed through a maximum
likelihood estimation on the validation set. Then, the posterior prob-
abilities pi ≡ Pr(y = i | x) for all i are obtained by solving the
optimization problem:

min
p

c∑
i=1

∑
j 6=i

(µjipi − µijpj)
2,

s.t.
c∑

i=1

pi = 1, pi ≥ 0 ∀i.
(7)

Let the validation set have size n′. The cost of estimating the
unknowns in (6) isO(kNewtonc

2n′), if the maximum likelihood prob-
lem is solved by using a Newton solver, where kNewton is the number
of Newton iterations. The cost of computing the posterior probabil-
ities is O(c3), because the nonlinear problem (7) is equivalent to a
linear system of size (c+ 1)× (c+ 1).

2456

Table 1. Computational costs of various kernel methods. The Big-O symbol is omitted for clarity.
Part 1 notation. n: Number of points; ni: Number of points in class i; d: Dimension; c: Number of classes; r: Number of features in
one-vs-rest; r̃: Number of features in one-vs-one; T (n, s): Time solving an n× n linear system with s right-hand sides.

Standard one-vs-rest RF one-vs-rest RF one-vs-one
Train time dn2 + T (n, c) drn+ r2n+ c2r + T (r, c) dr̃n+ r̃2n+ c2r̃2 + T (r̃, 1) · c2

Train memory n2 maxi(rni) + r2 + (c+ d)r maxi(r̃ni) + cr̃2 + (c2 + d)r̃
Test time (c+ d)n (c+ d)r (c2 + d)r̃

Test memory cn (c+ d)r (c2 + d)r̃

Part 2 assumption: (a) Class sizes are balanced, that is, ni = n/c for all i; (b) Linear systems are solved by using GMRES; (c) T (n, s) = εsn3

with ε < 1; (d) r = δn with δ < 1; and (e) r̃ = 2δn/c.

Standard one-vs-rest RF one-vs-rest RF one-vs-one
Train time εcn3 + dn2 δ2(1 + εδc)n3 + δdn2 + δc2n δ2/c2(1 + εδc)n3 + δ(δ + d/c)n2

Train memory n2 δ/c(1 + δc)n2 + δ(c+ d)n δ/c2(1 + δc)n2 + δ(c+ d/c)n
Test time (c+ d)n δ(c+ d)n δ(c+ d/c)n

Test memory cn δ(c+ d)n δ(c+ d/c)n

3. EXPERIMENTAL RESULTS

We perform experiments on the benchmark corpus TIMIT and
demonstrate the computational efficiency of the proposed method.

The preparation of the data followed that of [3]. In particular,
the data was segmented into 5-millisecond frames, each of which
was transformed to a 40-dimensional fMLLR feature vector. Each
frame was concatenated with five frames on each side so that the
data points for classification are 440-dimensional. One tenth of the
data was separated from the training set for parameter tuning and
validation. The evaluation was performed on the core test set. The
number of classes was 147 (49 phonemes × 3 states).

The program was implemented in C with the linear algebra com-
putations linked to ESSL. The experiments were performed on a
shared memory machine with 72 Power8 cores and 512GB memory.

The kernel function k used for reporting results in this section
was the Gaussian kernel. We found that other kernels (e.g., the
Laplace kernel popularized by [12]) behaved similarly in terms of
the best achievable performance.

The floating-point operations were done with single precision.
We experimented with double precision as well and found that the
difference in accuracy was negligible. This difference was also
comparable with the variation caused by the random nature of the
method. Clearly, the gain in computation with reduced precision
lies in timing and storage: The time for both training and testing
was reduced by approximately one half, and the same for memory
consumption.

Table 2. Classification errors, timing, and memory consumption.
#Features Err. (vote) Err. (prob) Train Time Memory

5K 34.37% 33.12% 240s 21GB
10K 33.70% 32.57% 1188s 69GB
15K 33.39% 32.29% 2544s 143GB
20K 33.16% 32.04% 4254s 249GB

Table 2 shows the results as the number r̃ of random features
increases. The classification accuracy can be evaluated in two ways:
based on voting or on the probability estimates (see Section 2.5). In
fact, the estimation method holds no guarantee that the probabilities
fully agree with the votes. The results in Table 2 and our experiences

indicate that predictions according to the probability estimates are
consistently better than those according to votes.

Table 3. Comparison of the results of the proposed method with the
best results in [3]. “Cl. Err.” means classification error and “PER”
means phone error rate.

Method Cl. Err. PER
MSE-DNN, 2K units, 2 layers [3] 34.12% 22.2%
CE-DNN, 4K units, 3 layers [3] 33.34% 20.5%

RF one-vs-rest, 400K features [3] 33.67% 21.3%
RF one-vs-one, 5K features 33.12% 21.8%
RF one-vs-one, 10K features 32.57% 21.5%
RF one-vs-one, 15K features 32.29% 21.0%
RF one-vs-one, 20K features 32.04% 20.9%

Table 3 compares our results with the best results reported in [3],
including those of the state-of-the-art DNNs and of the one-vs-rest
kernel method. In particular, the proposed method achieves the best
classification accuracies and its speech recognition accuracies (PER)
are highly comparable with the other methods.

Note that the methods under comparisons are trained under dif-
ferent computer architectures best suited for the nature of the com-
putation: DNNs were trained on a GPU, one-vs-rest was train on
a distributed memory BlueGene, and the proposed one-vs-one was
trained on a shared memory machine. Also note that the one-vs-
rest in [3] was computed by using a reformulated algorithm different
from the assumption of our cost analysis in Section 2.3. Hence, the
required computational resources were not straightforwardly compa-
rable. Nevertheless, the time and memory listed in Table 2 indicate
the economic computations of the proposed method.

4. ACKNOWLEDGMENT

We are grateful to Xing Liu for help on experiments. J. Chen is
supported in part by the XDATA program of the Advanced Re-
search Projects Agency (DARPA), administered through Air Force
Research Laboratory contract FA8750-12-C-0323. This work was
done while L. Wu was a summer intern at IBM Research.

2457

5. REFERENCES

[1] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic model-
ing using deep belief networks,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 1, pp. 14–22,
2012.

[2] Geoffrey Hinton, Li Deng, Dong Yu, Abdel rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara Sainath George Dahl, and Brian Kingsbury,
“Deep neural networks for acoustic modeling in speech recog-
nition,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, 2012.

[3] P. Huang, H. Avron, T. N. Sainath, V. Sindhwani, and B. Ram-
abhadran, “Kernel methods match deep neural networks on
TIMIT,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, 2014.

[4] Zhiyun Lu, Avner May, Kuan Liu, Alireza Bagheri Garakani,
Dong Guo, Aurélien Bellet, Linxi Fan, Michael Collins,
Brian Kingsbury, Michael Picheny, and Fei Sha, “How to
scale up kernel methods to be as good as deep neural nets,”
arXiv:1411.4000 [cs.LG], 2015.

[5] V. Sindhwani and H. Avron, “High-performance kernel ma-
chines with implicit distributed optimization and randomiza-
tion,” Technometrics, 2015, to appear.

[6] Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-
Florina Balcan, and Le Song, “Scalable kernel methods via
doubly stochastic gradients,” in Advances in Neural Informa-
tion Processing Systems 27, 2014.

[7] Chih-Chieh Cheng and B. Kingsbury, “Arccosine kernels:
Acoustic modeling with infinite neural networks,” in IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing, 2011.

[8] Bernhard Schölkopf and Alexander J. Smola, Learning with
Kernels: Support Vector Machines, Regularization, Optimiza-
tion, and Beyond, The MIT Press, 2001.

[9] Trevor Hastie, Robert Tibshirani, and Jerome Friedman, The
Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Springer, second edition, 2009.

[10] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola, “A
generalized representer theorem,” Lecture Notes in Computer
Science, vol. 2111, pp. 416426, 2001.

[11] Petros Drineas and Michael W. Mahoney, “On the Nyström
method for approximating a Gram matrix for improved kernel-
based learning,” Journal of Machine Learning Research, vol.
6, pp. 2153–2175, 2005.

[12] Ali Rahimi and Ben Recht, “Random features for large-scale
kernel machines,” in Neural Infomration Processing Systems,
2007.

[13] J. Yang, V. Sindhwani, Q. Fan, H. Avron, and M. Mahoney,
“Random Laplace feature maps for semigroup kernels on his-
tograms,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2014.

[14] Gene H. Golub and Charles F. Van Loan, Matrix Computa-
tions, Johns Hopkins University Press, 3rd edition, 1996.

[15] Yousef Saad, Iterative Methods for Sparse Linear Systems, So-
ciety for Industrial and Applied Mathematics, second edition,
2003.

[16] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng, “Probability
estimates for multi-class classification by pairwise coupling,”
The Journal of Machine Learning Research, vol. 5, pp. 975–
1005, 2004.

2458

