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ABSTRACT
The Kullback-Leibler divergence is a widespread dis-
similarity measure between probability density func-
tions, based on the Shannon entropy. Unfortunately,
there is no analytic formula available to compute this di-
vergence between mixture models, imposing the use of
costly approximation algorithms. In order to reduce the
computational burden when a lot of divergence evalua-
tions are needed, we introduce a sub-class of the mixture
models where the component parameters are shared be-
tween a set of mixtures and the only degree-of-freedom
is the vector of weights of each mixture. This sharing
allows to design extremely fast versions of existing dis-
similarity measures between mixtures. We demonstrate
the effectiveness of our approach by evaluating the qual-
ity of the ordering produced by our method on a real
dataset.

Index Terms— Mixture model, Density estimation,
Information geometry, Kullback-Leibler divergence,
Exponential family

1. INTRODUCTION AND MOTIVATION

The Kullback-Leibler divergence [1] (KL) is the relative
Shannon entropy between two probability density func-
tions:

KL (p‖q) =
∫
p(x) log

p(x)

q(x)
dx (1)

= H(p, q)−H(p) (2)

where H(p) is the Shannon entropy and H(p, q) ≥
H(p) is the cross-entropy. The divergence between p
and q measures the amount of information which is lost
when q (coming from an estimation algorithm) is used
to approximate p (the true distribution).

Since it is not symmetrical, it cannot be a distance
but it still bears a subset of the properties of the dis-
tance: self similarity (KL (p‖p) = 0); self identification
(KL (p‖q) = 0 ⇒ p = q); positivity (KL (p‖q) > 0).
Moreover it has the property of invariance to reparame-
terization [2] and is infinitesimally related to the Fisher-
Rao-Hotelling distance [3, 4, 5] of information geome-
try. It is also a Bregman divergence, allowing to apply
tools from computational information geometry such as
Bregman Voronoi diagrams [6].

For all these reasons, the Kullback-Leibler diver-
gence is a widespread tool in many statistical mod-
eling, signal processing and pattern recognition appli-
cations: source separation [7], speech recognition [8],
background extraction for object tracking in videos [9].

There is a closed-form formula available when the
divergence is computed between two members of the
same exponential family (such as between two Gaus-
sian distributions), using the bijection between exponen-
tial families and Bregman divergences [10]. But for two
mixture models with k1, k2 > 1 components

m(x) =

k1∑
i=1

ωipF (x; ηi) m′(x) =

k2∑
i=1

ω′ipF (x; η
′
i)

(3)

an analytic form does not exist[11] (unlike for other
divergences such as Squared Loss[12] and Cauchy-
Schwartz[13]). We choose here to focus on mixtures
of exponential families pF : the loss of generality is
very weak since a lot of common mixtures are ex-
ponential families (including Gaussian) and it allows
to build generic algorithms where the family is just a
parameter[14].

When a lot of divergence evaluations are needed,
the cost of the faster approximation techniques may not
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be affordable: the best compromise between speed and
accuracy, the variational approximation [15], needs to
evaluate the k1 × k2 Kullback-Leibler divergences be-
tween each pair of components of the two mixtures
KL (pF (·; ηi)‖pF (·; η′i)). In order to reduce the com-
putational burden, we introduce a sub-class of mixture
models where the parameters of the components are
shared between all the mixtures and the only degree-of-
freedom is the vector of weights of each mixture (the
set of shared components can thus be seen as a dictio-
nary and the weights as the activation of the different
atoms of the dictionary). In this case, the previous di-
vergences between pairs of components can thus be pre-
computed just after the estimation of the mixtures, limit-
ing the computational cost during the evaluations of the
variational approximation of the divergence.

This article is organized as follows: after this in-
troduction and a description of previous works on
Kullback-Leibler approximation, we define the con-
cept of co-mixtures and then introduce an Expectation-
Maximization-based algorithm to build such mixtures;
next we introduce fast variants of the variational and
Goldberger approximations; finally we experimentally
study the quality of our mixture estimation and the
speed-up of the approximation on a simulated retrieval
application built on top of a real bio-informatics dataset.

2. COMPARING MIXTURE MODELS

A lot of work have been devoted to overcome the lack
of an analytic formula for the Kullback-Leibler diver-
gence, we review here the most important in practical
applications. One of the major methods relies on Monte-
Carlo integration to estimate the divergence. For the ran-
dom variates x1, . . . , xn drawn from the mixture m, the
Monte-Carlo estimator (KLMC) is:

KLMC

(
m‖m′

)
=

1

n

n∑
i=1

log
m(xi)

m′(xi)
(4)

This formula has the advantage of being consistent but
requires a large number of variates to achieve a good
precision.

Instead of trying to numerically compute the in-
tegral, another approach is to design new functions
which are both close to Kullback-Leibler and com-
putable in closed-form. A first example is the Gold-
berger approximation[8] which comes from a majora-
tion of the Kullback-Leibler divergence:

KLGold

(
m‖m′

)
=argmin

σ
KL
(
ω‖σ(ω′)

)
(5)

+
∑

ωiKL
(
pF (·‖ηi) ‖pF

(
·‖η′σ(i)

))
In this approximation, a minimization problem is solved
over all the possible permutations σ of the components
in order to cope with all the possible orderings of the
components of the two mixtures.

A better approximation in the state-of-the-art is the
variational approximation[15]:

KLvar

(
m‖m′

)
=
∑
i

ωi log

∑
j ωje

−KL(pF (·‖ηi)‖pF (·‖ηj))∑
j ω
′
je
−KL(pF (·‖ηi)‖pF (·‖η′j))

(6)

This approximation achieves the lowest variance com-
pared to a KLMC with a very larger number of points
(more than 1 million) but is not positive.

3. DEFINITION AND ESTIMATION

Definition 1. A co-mixture of exponential families (a
comix) with K components is a set of S statistical mix-
ture models of the form:

m1(x;ω
(1)
i . . . ω

(1)
K ) =

∑K
i=1 ω

(1)
i pF (x; ηi)

m2(x;ω
(2)
i . . . ω

(2)
K ) =

∑K
i=1 ω

(2)
i pF (x; ηi)

. . .

mS(x;ω
(S)
i . . . ω

(S)
K ) =

∑K
i=1 ω

(S)
i pF (x; ηi)

(7)

pF is the exponential family with log-normalizer F and
η1 . . . ηK are the parameters of the components and are
shared between all the individual mixtures of the co-
mixture; the S vectors ω(l)

1 . . . ω
(l)
K are the vectors of

weights (thus positive) with the property
∑K

i=1 ω
(l)
i = 1

for any l. The parameter S depends on the number of
sets of points which are modeled jointly.

In order to estimate the parameters of the co-mixture
(the vectors of parameters components and the ma-
trix of weights), we adapt the Bregman Soft Clustering
algorithm[10], which is a variant of EM for exponen-
tial families. The version for co-mixtures, called co-
Expectation-Maximization (co-EM) searches for a local
minimum of the average of the log-likelihoods of the S
individual mixtures on the associated input set of points
X (1), . . . ,X (S):

L(X (1), . . . ,X (S)) =
1

S

S∑
l=1

l(l)(X (l)) (8)
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This is done with an iterative EM-like algorithm classi-
cally divided into two main steps:
Expectation step We compute S responsibility matrices
p(1), . . . , p(S):

p(l)(i, j) =
ω
(l)
j pF (x

(l)
i , ηj)

m(x
(l)
i |ω(l), η)

(9)

Maximization step The maximization step is itself di-
vided in two steps: first, S partial estimates (not shared)
are computed then all these partial estimates are com-
bined into the new estimate of the shared parameters.

Weights and partial estimates for the l-th dataset are
computed using the observations for X (l) and the l-th
responsibility matrix:

η
(l)
j =

∑
i

p(l)(i, j)∑
u p

(l)(u, j)
t(x

(l)
i ) (10)

ω
(l)
j =

∑
i

p(l)(i, j)∑
u p

(l)(u, j)
(11)

For the j-th component, the new estimate of ηj
is computed as a Bregman barycenter of all the
η
(1)
j , . . . , η

(S)
j , giving the same weight to all the sets

of points:

ηj =
1

S

S∑
l=1

η
(l)
j (12)

Notice that we work with the expectation parameters
η of the exponential family.

4. FAST DIVERGENCES

The dissimilarity measures between mixtures presented
previously can be rephrased to take into account the
shared parameters. As the terms computing KL be-
tween identical components vanish, the Goldberger ap-
proximation becomes the following simpler formula:
KLGold (m‖m′) = KL (ω‖ω′). The minimization prob-
lem also vanishes since we do not have any more to cope
with the different orderings of the components.

For the variational approximation, the terms involv-
ing the cross dissimilarity between all pairs of com-
ponents can be precomputed since the parameters are
known in advance: Dij = KL (pF (·‖ηi) ‖pF (·‖ηj)).

5. EXPERIMENTS

From the practitioner point of view, the absolute values
of a dissimilarity measure are not really important: rela-
tive values are a lot more valuable in most cases. More-
over, the largest values of a divergence are often of low
interest since the useful information is usually concen-
trated in the closest points instead of the farthest ones. In
order to demonstrate both the quality of the mixture es-
timation using comix and the quality of the divergence
computations, we thus study in which measure the or-
dering of the points is the same between a reference
baseline and comix-based methods. This evaluation is
made by simulating a retrieval application and measur-
ing the mean average precision (mAP) over all the pos-
sible queries (by successively taking each mixture as the
query and looking at the retrieved mixtures in a short list
of size 10). The experiments presented here are made on
a bio-informatics 1D dataset[16, 17]: it consists of 211
sets of points (so the parameter S will be 211) with 3000
to 5000 observations in each set. We estimate a density
for each set of points with a Gaussian Mixture Model.
The chosen baseline is made of an estimation step with
classical EM (with 8 components, as set by an expert)
and a comparison step made with KLMC (with 1 mil-
lion variates, which is often considered enough to have
a very small variance on the estimation).

Fig. 1 (left) describes the evolution of the precision
of the KLMC estimation with respect to the sample size
and compares it with the precision of the variational KL
approximation. A target objective to validate the qual-
ity of the proposed joint estimation method is to be as
good as the variational approximation between EM mix-
tures. Fig. 1 (right) studies the precision of our fast
versions of the KL approximations with respect to the
number of components. Even if some value is consid-
ered a good number of components for individual mix-
tures, it may need a lot more components to cope with
the variations of all the set of points during the joint es-
timation. We see here that 4 components are sufficient
to achieve the same precision rate for variational KL on
comix and variational KL on traditional mixtures. It is
even more interesting to see that with 32 components
we get precision values which are only attained with the
lot more costly Monte-Carlo method. The Goldberger
approximation has a similar behavior but outperforms
variational KL for all number of components. Our in-
terpretation is that the joint estimation of a co-mixture
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Fig. 1. Left: mAP of KLMC between EM mixtures wrt the sample size and result from variational KL. Right: mAP
wrt the number of components of variational Kullback-Leibler and Goldberger between co-EM mixtures.

k co-
EM

Speed-up be-
tween co-EM
and EM8

KLvar on
comix

Speed-up between
KLvar on comix
and KLvar on EM8

Speed-up between
KLvar on comix and
KLMC100 on EM8

Goldberger
on comix

4 51s ×1.5 0.00020s ×180 × 20 0.00015s
8 99s ×0.77 0.00044s ×84 × 5.8 0.00030s

16 48s ×1.6 0.0012s ×28 × 1.6 0.00059s
32 150s ×0.49 0.0040s ×9.1 × 0.41 0.0012s
64 450s ×0.17 0.014s ×2.5 × 0.10 0.0024s

128 600s ×0.12 0.046s ×0.80 ×0.026 0.0049s

Table 1. Absolute times for computation on comix and speed-up when compared to the times of the equivalent
computation on individual mixtures. Times for co-EM are compared with the total time for all the individual EM.

is able to capture intrinsic similarities between set of
points which are missed out when the sets are looked
at independently by EM.

Table 1 shows the computation times for co-EM and
for the fast divergence computations and displays the
speed-up compared to the estimation of the 211 mix-
tures with EM and the speed-up compared to slow ver-
sion of the approximations. We first see that the com-
putation cost of the estimation of a comix with co-EM
on all the sets of points has the same order of magnitude
than the estimation of all the individual mixtures with
EM, meaning that there is no significant loss of time
during the estimation step. Comparison between fast
variational KL and variational KL between traditional
mixtures shows a big speed-up for a number of compo-
nents between 4 and 64, meaning that the method would
cope with a larger number of components if needed. The
Goldberger approximation has a similar cost than vari-
ational Kullback-Leibler, without precomputation step,
making it very interesting due to its better performances.
All computation were made on an Intel i5-4440 CPU.

6. CONCLUSION

We presented a new approach in the field of the approx-
imations of the Kullback-Leibler divergence between
mixtures: instead of designing estimation techniques or
introducing different but related formulas which are easy
to compute, we work on the nature itself of the mixture
models, by imposing the shared parameters among all
the considered mixtures. This sharing allows to build
extremely fast versions of classical Kullback-Leibler ap-
proximations: experiments on a retrieval task show that
the combination of co-mixtures and fast approximations
are not only fast but also meaningful. Nevertheless, we
are able to outperform the retrieval precision attained by
methods working on individual mixtures: this allows a
large set of exploration paths to understand and exploit
how the notion of co-mixture can improve performances
in fields where mixtures are commonly used.
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