
RD-SVM: A RESILIENT DISTRIBUTED SUPPORT VECTOR MACHINE

Zhixiong Yang and Waheed U. Bajwa

Dept. of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, USA
Emails: {zhixiong.yang, waheed.bajwa}@rutgers.edu

ABSTRACT

Support vector machines (SVMs) are one of the most widely used
supervised learning algorithms for classification problems. Recent
years have witnessed an increasing interest in distributed variants of
SVMs, in which the (labeled) training data is distributed across dif-
ferent nodes. While a number of algorithms have been developed in
this regard, they all make the simplified assumption that every node
in the network operates as intended. In many applications, however,
it is common for some of the nodes to undergo failures due to faulty
equipment, cyber attacks, etc., and inject faulty data into the net-
work. This kind of failure, termed Byzantine failure, is impossible
to protect against using existing distributed SVM algorithms. This
paper revisits the problem of distributed SVM under the possibil-
ity of Byzantine failures in the network. In this regard, it proposes a
novel algorithm for distributed SVM that remains resilient to Byzan-
tine failures as long as the number of faulty nodes in the network is
not too large. Numerical results on real-world data confirm the su-
periority of the proposed algorithm over existing approaches.

Index Terms— Byzantine fault tolerance, distributed classifica-
tion, distributed consensus, support vector machine

1. INTRODUCTION

Classification is one of the most common tasks in machine learning.
While a number of techniques exist in the literature for learning (lin-
ear and nonlinear) classifiers from (labeled) training data, support
vector machines (SVMs) have emerged as one of the most popu-
lar approaches to (supervised) classifier training. This popularity of
SVMs, originally proposed as maximum-margin classifiers for lin-
early separable classes [1], can be partly attributed to their ease of
implementation, their ability to handle non-separable classes [2], and
their generalizations to nonlinear classification problems [3]. The
last two decades in particular have seen significant advances in the
theory and practice of SVMs under the assumption of training data
available at a single location; see, e.g., [4–8].

In recent years, proliferation of sensors, smart devices, and cloud
storage have brought to the fore another important aspect of classifi-
cation problems in many application areas, namely, classifier learn-
ing from training data distributed across multiple locations. While
a number of techniques have been proposed in the literature for dis-
tributed classifier training [9, 10], distributed variants of SVMs are
once again emerging as one of the most popular means of addressing
this problem; see, e.g., [11–14]. Notwithstanding the algorithmic
and analytical differences among these and related works, existing
literature on distributed SVMs makes the simplified assumption that
all locations (henceforth referred to as nodes) involved in distributed

This work is supported in part by the ARO (grant W911NF-14-1-0295),
NSF (grant CCF-1453073), and ARL (Robotics CTA subaward).

classifier training operate within the learning framework as origi-
nally intended. Unfortunately, this somewhat idealized assumption
is seldom true in real-world settings. Rather, nodes in large-scale dis-
tributed systems routinely undergo undetected failures due to mal-
functioning equipment, cyber attacks, etc., with the end result being
undetected injection of faulty data into the learning framework. Such
failures in which nodes can arbitrarily deviate from their intended
behavior, referred to as Byzantine failures [15, 16], can render even
the most sophisticated distributed SVM algorithms ineffective.

Our goal in this paper is to revisit the problem of distributed
SVM under the realistic assumption that some nodes will undergo
Byzantine failures during classifier training. Our main contribu-
tion in this regard is development of a Byzantine fault-tolerant al-
gorithm, termed resilient distributed support vector machine (RD-
SVM), for learning of a maximum-margin classifier from training
data distributed across a network of nodes. The distinguishing fea-
ture of RD-SVM is that it learns a common separating hyperplane at
every functioning node in the network, even when some of the nodes
in the network transmit (arbitrarily) faulty data to their neighboring
nodes. In order to demonstrate the effectiveness of RD-SVM and
its superiority over existing work, we also report outcomes of binary
and multiclass classification experiments performed using RD-SVM
on CIFAR-10 [17] and MNIST [18] datasets, respectively.

To the best of our knowledge, RD-SVM is the first distributed
SVM algorithm capable of tolerating Byzantine failures in networks.
It accomplishes this by leveraging some of the ideas in [13], which
puts forth a distributed SVM algorithm based on distributed con-
sensus [19], and in [20–22], which present fault-tolerant distributed
strategies for averaging consensus [23]. We conclude by noting that
our focus in this initial work is on linear SVM and resilience to faulty
nodes, while extensions to nonlinear (kernel) SVM and explicit iden-
tification of faulty nodes will be investigated in future work.

2. PROBLEM FORMULATION

We consider a connected network ofM nodes, expressed as an undi-
rected, static, connected graph G(J,E) (see Fig. 1). Here, the set of
vertices J := {1, . . . ,M} represents nodes in the network, while
the set of edges E represents bidirectional communication links be-
tween nodes, with (j, i) ∈ E if and only if node j and node i are con-
nected to each other. It is assumed that each node j has access to a lo-
cal training set Sj := {(xj,n, yj,n)}

Nj

n=1, where xj,n ∈ Rp denotes
a training data vector and yj,n ∈ {−1, 1} denotes the correspond-
ing class label.1 Our main objective then is to develop a distributed
algorithm that enables each node to learn a maximum-margin linear
classifier gj(x) : x 7→ {−1, 1} such that ∀j, gj(x) ≈ g(x), where

1Extension of this binary classification setup to a multiclass setting is
straightforward and will be discussed in Sec. 5.

2444978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

g(x) denotes the centralized maximum-margin linear classifier that
could have been learned using the entire training data {Sj}Mj=1.

The assumption that makes distributed classifier training chal-
lenging is that the local training sets cannot be gathered at a single
location due to bandwidth limitations, privacy concerns, storage con-
straints, etc. Rather, the local gj(·)’s need to be iteratively learned
using the following message passing protocol. Suppose vj [k] de-
notes some (private) “summary statistic” at node j at the start of it-
eration k. Then each node j broadcasts this summary statistic to the
nodes in its neighborhood, defined as Nj := {i ∈ J : (j, i) ∈ E}.
Next, all nodes update their respective summary statistics as follows:
vj [k + 1] = fj({vji [k]}i∈Nj), k ∈ Z≥0, where vji [k] denotes data
received by node j from node i in iteration k, and the update func-
tions fj(·), which need not be the same for all nodes, are assigned to
the nodes at the start of the algorithm. Finally, each node j uses its
updated summary statistic to modify the local classifier gj(·).

While distributed classifier training using such message passing
protocols has been previously studied [11–14], such works require
all nodes in the network to operate as intended. In contrast, the main
assumption in this paper is that some of the nodes in the network can
undergo Byzantine failures, formally defined as follows.

Definition 1. A node j ∈ J is said to be Byzantine if during any
iteration k ∈ Z≥0, it either sends one of more of its neighbors an
incorrect version of its summary statistic, i.e., ∃i ∈ Nj : vij [k] 6=
vj [k], or it updates its summary statistic using f ′j(·) 6= fj(·).

In this paper, we assume there are at most F Byzantine nodes in the
neighborhood of any functioning (non-Byzantine) node. Our goal
then is development of: (i) a Byzantine fault-tolerant algorithm for
distributed classifier training, and (ii) conditions on F that allow the
developed algorithm to be resilient to Byzantine failures.

3. BACKGROUND

Our focus here is on a (linear) support vector machine (SVM), which
is a popular approach to classifier training. In words, an SVM uses
(labeled) training data to learn a hyperplane that separates data into
two classes. In a centralized setting, the training of an SVM can be
described as follows. A single location is given access to a labeled
training set S := {(xn, yn)}Nn=1 of N samples. The goal then is
to make use of S and learn a maximum-margin decision hyperplane
g(x), defined in terms of a normal vector w and an intercept b as
g(x) = wTx + b. In order to learn the corresponding pair (w, b), a
centralized SVM solves the following optimization problem:

min
w,b,ξn

1

2
‖w‖22 + C

N∑
n=1

ξn such that

∀n, yn(wTxn + b) ≥ 1− ξn, and ∀n, ξn ≥ 0. (1)

Here, {ξn} are termed slack variables, while C is a positive scalar
constant; see [24] for a derivation of (1). This process of obtaining
optimalw and b using (1) is referred to as “training” in the literature.
After training is finished, any new sample x can be classified as y =
1 if g(x) > 0 and y = −1 if g(x) < 0.

While traditional literature on SVM training focuses on a cen-
tralized setup, recent years have seen an interest in training an SVM
for the case when training data is partitioned across M nodes, i.e.,
S =

⋃
j∈J Sj . Under the assumption of no Byzantine nodes in

the network, this can be accomplished using the distributed support
vector machine (DSVM) approach described in [13]. The training

2

1

4

5

7

3

M-3

M-2

M-1

8

M

6
Functioning node

Byzantine node

Fig. 1. An example of a network with Byzantine nodes. (Unde-
tected) Byzantine nodes can make distributed learning algorithms
go awry through communication of faulty data to their neighbors.

problem in this case can be defined as

min
wj ,bj ,ξj,n

1

2

M∑
j=1

‖wj‖22 +MC

M∑
j=1

Nj∑
n=1

ξj,n (2)

s.t. yj,n(w
T
j xj,n + bj) ≥ 1− ξj,n, ∀j ∈ J, n = 1, ..., Nj ,

ξj,n ≥ 0, ∀j ∈ J, n = 1, ..., Nj ,

wj = wi, bj = bi, ∀j ∈ J, i ∈ Nj .
In [13], the optimal value of vj is obtained by solving the dual of

a modified version of (2).2 Specifically, let λ denote the Lagrangian
corresponding to the constraint yj,n(wTj xj,n + bj) ≥ 1 − ξj,n and
α denote the Lagrangian corresponding to the constraint vj = vi.
Then [13] solves (2) in a distributed fashion using the alternating
direction method of multipliers [25]. This involves in each iteration
k, node j storing a vector vj [k] = [wTj , bj]

T as its summary statistic
and then broadcasting vj [k] to all nodes i ∈ Nj . Next, all nodes in
the network update their local λj’s, vj’s, and αj’s as follows:

λj [k + 1] = argmax
0j�λj�MC1j

−1

2
λTj YjXjU

−1
j XT

j Yjλj

+ (1j + YjXjU
−1fj [k])

Tλj ,

vj [k + 1] = U−1
j (XT

j Yjλj [k + 1]− fj [k]), and

αj [k + 1] = αj [k] +
η

2

∑
i∈Nj

(vj [k + 1]− vi[k + 1]),

(3)

where � represents element-wise inequality and 0j (resp., 1j) is a
vector with all entries equal to 0 (resp., 1). Here, Uj and fj are
defined as Uj := (1+2η|Nj |)Ip+1−

∏
p+1 and fj [k] := 2αj [k]−

η
∑
i∈Nj

(vj [k] + vi[k]), where η > 0 and
∏
p+1 is a (p + 1) ×

(p + 1) matrix with zeros everywhere except [
∏
p+1](p+1)(p+1) =

1. Denoting the optimal value of (wj , bj) in (2) as (w∗, b∗), [13,
Prop. 1] shows that vj [k]→ [w∗T , b∗]T . Finally, note that (w∗, b∗)
also correspond to the solution of the following equivalent problem:

min
wj ,bj

1

2

M∑
j=1

‖wj‖22 +MC

M∑
j=1

Nj∑
n=1

`(yj,n, xj,n, wj , bj)

such that wj = wi, bj = bi, ∀j ∈ J, i ∈ Nj ,

(4)

where the hinge-loss function `(·) is given by `(yj,n, xj,n, wj , bj) =
max{0, 1− yj,n(wTj xj,n + bj)}.

2Connected nature of the network and the last constraint in (2) result in
all optimal vj ’s taking the same value [13, Lemma 1].

2445

4. RD-SVM: A RESILIENT DISTRIBUTED SVM

While the DSVM algorithm performs well in ideal settings, its per-
formance can be arbitrarily bad when there are Byzantine nodes in
the network. In order to illustrate this point, suppose there are only
2 nodes in the network, termed ‘A’ and ‘B’. Node A has local train-
ing set x1,1 = (1, 0), y1,1 = 1 and x1,2 = (0, 1), y1,2 = −1,
while node B has a set x2,1 = (0,−1), y2,1 = 1 and x2,2 =
(−1, 0), y2,2 = −1. When both nodes operate normally and update
their values according to (3), they learn the hyperplane described by
the equation x2 = x1. However, if node B is Byzantine and holds
its hyperplane L2 at x1 = −1.5, node A’s hyperplane (L1) will it-
eratively converge to x1 = −1.5 also (L′1), which is far from the
optimal one (Fig. 2). Here, we propose an algorithm termed resilient
distributed support vector machine (RD-SVM) to address this issue.

The main idea behind RD-SVM is to ignore some of the val-
ues that a node receives from its neighbors in each iteration. In-
deed, the only way that a Byzantine node can push another node j in
the wrong direction is for it to send node j a summary statistic that
makes node j incorrectly update its own summary statistic. How-
ever, when the majority of neighbors of node j are non-Byzantine,
the “faulty” received statistic can be considered an outlier and elim-
inated after identification. Below, we describe our approach to such
outlier identification and elimination.

Recall that hinge loss is an important metric to evaluate the per-
formance of linear classifiers. When comparing two classifiers, a
lower hinge loss stands for a better performance. Notice further
from (4) that distributed SVM training effectively reduces to min-
imization of the local hinge loss at each node. RD-SVM therefore
uses local hinge loss to determine how different the neighborhood
classifiers are from the local classifier at each node. It then declares
the neighboring classifiers with the largest differences from the local
classifier as potential outliers. To this end, we partition the set Sj
at each node into two sets Aj := {(x, y) : (x, y) ∈ Sj , y = 1}
and Bj := {(x, y) : (x, y) ∈ Sj , y = −1}. In words, Aj contains
samples with label 1 and Bj contains samples with label −1. Next,
for each neighboring classifier and the local classifier, we calculate
their hinge losses on sets Aj and Bj as follows:

∀i ∈ Nj , `Ai,j :=
∑

(x,y)∈Aj

max(0, 1− y(wTi x+ bi)),

`Aj,j :=
∑

(x,y)∈Aj

max(0, 1− y(wTj x+ bj)),

`Bi,j :=
∑

(x,y)∈Bj

max(0, 1− y(wTi x+ bi)), and

∀i ∈ Nj , `Bj,j :=
∑

(x,y)∈Bj

max(0, 1− y(wTj x+ bj)).

(5)

Finally, we also define two sets EAj := {i : i ∈ Nj , `Ai,j > `Aj,j}
and EBj := EBj = {i : i ∈ Nj , `Bi,j > `Bj,j}. Here, EAj (resp.,
EBj) contains all nodes that result in classifiers with larger hinge
losses on set Aj (resp., Bj) than the local classifier.

Identification of potential outliers in RD-SVM is a function of
the maximum number of Byzantine nodes in any neighborhood in
the network. Suppose there are at most F Byzantine nodes in the
neighborhood of any node j. Then if there are no more than F ele-
ments in EAj , we declare all nodes in EAj as outliers. On the other
hand, if there are more than F elements in EAj , we declare F nodes
with the largest `Ai,j’s as outliers. Similarly, if there are no more
than F elements in EBj , we declare all nodes in EBj as outliers.
But if there are more than F elements in EBj , we only declare F

𝑥1,1

𝐿1

𝐿2

𝐿′1

𝑥2,1

𝑥1,2

𝑥2,2

Fig. 2. L1 and L2 denote the initial separating hyperplanes of nodes
A andB, respectively, while L′1 denotes the final hyperplane at node
A. When node B holds L2 at x1 = −1.5, DSVM makes L1 con-
verge to L2 (dashed lines show iterative convergence of L1 to L′1).

nodes with the largest `Bi,j’s as outliers. Next, if node i is declared
as an outlier by node j, then node j eliminates node i from its neigh-
borhood Nj during the current iteration. Let N ′j denote the new
neighborhood set of node j after elimination of the outliers. Then
the update step (3) becomes

λj [k + 1] = argmax
0j�λj�MC1j

−1

2
λTj YjXjU

−1
j XT

j Yjλj

+ (1j + YjXjU
−1fj [k])

Tλj ,

vj [k + 1] = U−1
j (XT

j Yjλj [k + 1]− fj [k]), and

αj [k + 1] = αj [k] +
η

2

∑
i∈N ′

j

(vj [k + 1]− vi[k + 1]).

(6)

A detailed description of RD-SVM is provided in Algorithm 1.
We now comment on the workings of RD-SVM. Since Algo-

rithm 1 eliminates at most 2F nodes during each iteration, where F
is the maximum number of Byzantine nodes in any network neigh-
borhood, there are two conditions that need to be met in the network.
The first one concerns the size of the neighborhood set, |Nj |. Each
node has to have at least 2F + 1 neighbors to guarantee that it can
communicate with the rest of the network. Take node 5 in Fig. 1 as
an example. If we set F = 1, and `A2,5 > `A5,5 and `B6,5 > `B5,5,
then node 5 eliminates both nodes 1 and 2 from its neighborhood,
which means node 5 will be disconnected from the rest of the net-
work. The second condition concerns the redundancy in the net-
work. Specifically, there is a possibility after the elimination step
that the network becomes divided into two or more disjoint subsets.
Once again, we revert to Fig. 1 for an example. If node 3 eliminates
node 7 and node 6 eliminates node 8 during some iteration k, then
nodes 1, 2, . . . , 6 will end up communicating only with each other,
which might make it impossible to achieve consensus among the
functioning nodes. This notion of redundancy (or robustness) can be
formulated using the following definition from [22].

Definition 2. Let Sm denotes a subset of J and γrSm
denotes the

set γrSm
= {j ∈ Sm : |Nj \ Sm| ≥ r}. A nonempty, nontrivial

digraph G = (J,E) of M ≥ 2 nodes is (r, s)-robust for nonnega-
tive integers r ∈ Z≥0, 1 ≤ s ≤ M if for every pair of nonempty,
disjoint subsets S1, S2 of J , at least one of the following holds: (i)
|γrS1
| = |S1|; (ii) |γrS2

| = |S2|; and (iii) |γrS1
|+ |γrS2

| ≥ s.

2446

Algorithm 1 Resilient Distributed Support Vector Machine
Input ∀j ∈ J , data Sj , initial values λj [0], vj [0], and αj [0] := 0

1: ∀j ∈ J , define the sets Aj and Bj
2: repeat
3: ∀j ∈ J , compute λj [k + 1] using (6)
4: ∀j ∈ J , compute vj [k + 1] using (6)
5: ∀j ∈ J , broadcast vj [k + 1] to all i ∈ Nj
6: for all j ∈ J do
7: Compute `Ai,j , `Aj,j , `Bi,j and `Bj,j using (5)
8: Define the sets EAj and EBj
9: if |EAj | ≤ F

10: N ′j ← Nj \ EAj
11: else
12: `∗A ← the F -th largest value among all `Ai,j’s
13: Define E′Aj ← {i : `Ai,j ≥ `∗A}
14: N ′j ← Nj \ E′Aj
15: end if
16: if |EBj | ≤ F
17: N ′j ← N ′j \ EBj
18: else
19: `∗B ← the F -th largest value among all `Bi,j’s
20: Define E′Bj ← {i : `Bi,j ≥ `∗B}
21: N ′j ← N ′j \ E′Bj
22: end if
23: Compute αj [k + 1] using (6)
24: end for
25: until vi = vj ∀i, j ∈ J

Here, we conjecture that RD-SVM can achieve consensus on
functioning nodes in the presence of at most F Byzantine nodes in
each neighborhood as long as the network is at least (F +1, F +1)-
robust. In words, this (F+1, F+1)-robustness condition means that
regardless of the division of network into sets S1 and S2, there will
always be at least 1 node left in S1 that can communicate with S2

even after elimination of F outliers by each node in every iteration.

5. NUMERICAL RESULTS

We first test the performance of RD-SVM on the CIFAR-10 dataset
[17], which includes 60000 different images of 10 subjects. Here,
we do binary classification to distinguish between cats and ships.
We generate an Erdős–Rényi graph of 25 nodes with parameter 0.51,
with the final graph having an average degree of 11.76. The training
set at each node corresponds to 2000 images (vectorized into 3072-
dimensional vector) each of cats and ships, resulting in a total of
50000 training and 10000 test samples per class. We perform three
different experiments. First, we let all the nodes be non-faulty and
record the performance of DSVM on the test data. Next, we ran-
domly pick 4 nodes to be Byzantine and make each Byzantine node
broadcast a random vector to its neighborhood in each iteration. In
this setting, we first record the performance of DSVM on the test
data and then record the performance of RD-SVM on the test data.

Fig. 3 shows the results of our experiments for DVSM without
Byzantine nodes and RD-SVM with Byzantine nodes. Since RD-
SVM strives for consensus only among the non-Byzantine nodes,
our results are plotted only for non-faulty nodes. DSVM with Byzan-
tine nodes (not plotted) results in an error rate of 50%, which shows
its fragility in the presence of Byzantine nodes. On the other hand,
RD-SVM tolerates Byzantine failures with only a slight decrease in
performance compared to DSVM without Byzantine nodes.

0 10 20 30 40 50 60 70 80 90
0.144

0.146

0.148

0.15

0.152

0.154

0.156

0.158

0.16

0.162

0.164

Iterations

A
ve

ra
ge

 e
rr

or
 r

at
e

am
on

g
no

n−
fa

ul
ty

 n
od

es

DSVM
RD−SVM

Fig. 3. Numerical results on CIFAR-10 dataset for DSVM with-
out Byzantine nodes and RD-SVM with Byzantine nodes. The blue
curve shows the error rate as a function of the number of iterations
for DSVM, while the red curve shows the error rate (on non-faulty
nodes) as a function of the number of iterations for RD-SVM in the
presence of 4 Byzantine nodes.

Next, we carry out multiclass classification on MNIST dataset
[18], which contains images of handwritten digits from ’0’ to ’9’.
The 4 digits picked in our experiments are ’0’,’1’,’6’, and ’7’. The
network setup in here is the same one described earlier for CIFAR-10
data. We use 200 training and 32 test samples per digit for each node,
resulting in a total of 20000 training and 3200 test samples. We make
use of the binary tree method in [26] for multiclass classification
using binary SVM. Once again, we run experiments using DSVM
without Byzantine nodes as well as using RD-SVM and DSVM with
4 random Byznatine nodes. The results of these experiments are
reported in Table 1.

Algorithm # of Byzantine nodes Error Rate Consensus
DSVM 0 2.24% Yes
DSVM 4 75% No

RD-SVM 4 2.25% Yes

Table 1. Numerical results on MNIST dataset for DSVM without
Byzantine nodes, and DSVM and RD-SVM with Byzantine nodes.

It can once again be seen from Table 1 that the DSVM algo-
rithm breaks down in the presence of Byzantine nodes. In fact, the
algorithm cannot even achieve consensus in this case due to the ran-
dom behavior of the Byzantine nodes. On the other hand, RD-SVM
is once again resilient to Byzantine nodes and its performance (on
non-faulty nodes) is almost as good as in the ideal setting.

6. CONCLUSION

In this paper, we presented a distributed, supervised learning algo-
rithm that relaxes the assumption that all nodes in the network op-
erate as intended. We showed through numerical simulations that
the proposed algorithm, termed resilient distributed support vector
machine (RD-SVM), can successfully tolerate Byzantine failures of
nodes in the network during distributed training of an SVM. This is
in contrast to prior work in the literature on distributed SVM that
tends to be fragile in the presence of Byzantine nodes. Our fu-
ture work in this direction includes rigorous characterization of the
conditions under which RD-SVM achieves consensus on non-faulty
nodes in the network.

2447

7. REFERENCES

[1] V. N. Vapnik, Statistical learning theory, vol. 1, Wiley-
Interscience, 1998.

[2] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
learning, vol. 20, no. 3, pp. 273–297, 1995.

[3] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training al-
gorithm for optimal margin classifiers,” in Proc. 5th Annu.
Workshop Computational Learning Theory (COLT’92), 1992,
pp. 144–152.

[4] T. Joachims, “Text categorization with support vector ma-
chines: Learning with many relevant features,” in Machine
Learning: ECML-98, C. Nedellec and C. Rouveirol, Eds.,
vol. 1398 of Lecture Notes in Computer Science, pp. 137–142.
Springer Berlin Heidelberg, 1998.

[5] J. Platt, “Fast training of support vector machines using se-
quential minimal optimization,” in Advances in Kernel Meth-
ods: Support Vector Learning, B. Schölkopf, C. J. C. Burges,
and A. J. Smola, Eds., chapter 12. MIT Press, 1999.

[6] J. A. K. Suykens and J. Vandewalle, “Least squares support
vector machine classifiers,” Neural Processing Letters, vol. 9,
no. 3, pp. 293–300, 1999.

[7] V. Vapnik and O. Chapelle, “Bounds on error expectation for
support vector machines,” Neural Computation, vol. 12, no. 9,
pp. 2013–2036, 2000.

[8] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support
vector machines with Gaussian kernel,” Neural Computation,
vol. 15, no. 7, pp. 1667–1689, 2003.

[9] R. Bekkerman, M. Bilenko, and J. Langford, Scaling up ma-
chine learning: Parallel and distributed approaches, Cam-
bridge University Press, 2011.

[10] Z. Shakeri, H. Raja, and W. U. Bajwa, “Dictionary learning
based nonlinear classifier training from distributed data,” in
Proc. 2nd IEEE Global Conf. Signal and Information Process-
ing (GlobalSIP’14), Symposium on Network Theory, Atlanta,
GA, Dec. 2014, pp. 759–763.

[11] T. Do and F. Poulet, “Classifying one billion data with a new
distributed SVM algorithm,” in Proc. Intl. Conf. Research, In-
novation and Vision for the Future, 2006, pp. 59–66.

[12] A. Navia-Vázquez and E. Parrado-Hernandez, “Distributed
support vector machines,” IEEE Trans. Neural Netw., vol. 17,
no. 4, pp. 1091–1097, 2006.

[13] P. Forero, A. Cano, and G. Giannakis, “Consensus-based dis-
tributed support vector machines,” J. Machine Learning Re-
search, vol. 11, pp. 1663–1707, 2010.

[14] C. Lee and D. Roth, “Distributed box-constrained quadratic
optimization for dual linear SVM,” in Proc. 32nd Int. Conf.
Machine Learning (ICML’15), 2015, pp. 987–996.

[15] L. Lamport, R. Shostak, and M. Pease, “The Byzantine gener-
als problem,” ACM Trans. Programming Languages and Sys-
tems, vol. 4, no. 3, pp. 382–401, 1982.

[16] R. Friedman, A. Mostefaoui, and M. Raynal, “Simple and
efficient oracle-based consensus protocols for asynchronous
Byzantine systems,” IEEE Trans. Dependable and Secure
Computing, vol. 2, no. 1, pp. 46–56, 2005.

[17] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Technical report, Department of Computer Science,
University of Toronto, 2009.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proc. IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[19] J. N. Tsitsiklis, Problems in decentralized decision making and
computation, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, Dec. 1984.

[20] S. Sundaram and C. Hadjicostis, “Distributed function calcu-
lation via linear iterative strategies in the presence of malicious
agents,” IEEE Trans. Autom. Control, vol. 56, no. 7, pp. 1495–
1508, 2011.

[21] H. Zhang and S. Sundaram, “Robustness of information dif-
fusion algorithms to locally bounded adversaries,” in Proc.
American Control Conf. (ACC’12), 2012, pp. 5855–5861.

[22] H. J. LeBlanc, Haotian Zhang, X. Koutsoukos, and S. Sun-
daram, “Resilient asymptotic consensus in robust networks,”
IEEE J. Select. Areas Commun., vol. 31, no. 4, pp. 766–781,
Apr. 2013.

[23] L. Xiao and S. Boyd, “Fast linear iterations for distributed
averaging,” Systems Control Lett., vol. 53, no. 1, pp. 65–78,
Sept. 2004.

[24] C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2,
no. 2, pp. 121–167, 1998.

[25] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and
Jonathan Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers,
vol. 3 of Foundations and Trends in Machine Learning, Now
Publishers Inc., Hanover, MA, Jan. 2011.

[26] G. Madzarov, D. Gjorgjevikj, and I. Chorbev, “A multi-class
SVM classifier utilizing binary decision tree,” Informatica, vol.
33, no. 2, 2009.

2448

