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ABSTRACT

This work formulates a novel song recommender system as
a matrix completion problem that benefits from collaborative
filtering through Non-negative Matrix Factorization (NMF)
and content-based filtering via total variation (TV) on graphs.
The graphs encode both playlist proximity information and
song similarity, using a rich combination of audio, meta-data
and social features. As we demonstrate, our hybrid recom-
mendation system is very versatile and incorporates several
well-known methods while outperforming them. Particularly,
we show on real-world data that our model overcomes w.r.t.
two evaluation metrics the recommendation of models solely
based on low-rank information, graph-based information or a
combination of both.

Index Terms— Recommender system, graphs, NMF, to-
tal variation, audio features

1. INTRODUCTION

Recommending movies on Netflix, friends on Facebook, or
jobs on LinkedIn are tasks gaining an increasing interest over
the last years. Low-rank matrix factorization techniques [1]
where amongst the winners of the famous Netflix prize, in-
volving explicit user ratings as input. Similar techniques were
soon used in order to solve implicit feedback problems, where
item preferences were implied for example by the actions of a
user [2, 3]. Specifically regarding songs and playlists recom-
mendation, various techniques have been proposed, ranging
from pure content-based methods [4] to hybrid models [5].
A comprehensive review of related algorithms can be found
in [6,7]. Recently, graph regularization was proposed in order
to enhance the quality of matrix completion problems [8–10].
The contributions of this paper are:

• a mathematically sound hybrid system that benefits
from collaborative and content-based filtering,

• the introduction of a new graph regularization term
(TV) [11] in the context of recommendation that out-
performs the widely used Tikhonov regularization [9],

• a well-defined iterative optimization scheme based on
proximal splitting methods [12].

Numerical experiments demonstrate the performance of our
proposed recommender system.

Fig. 1. The architecture of our playlist recommender system.

2. OUR RECOMMENDATION ALGORITHM

Suppose we are given n playlists, each containing some of m
songs. We define matrix C ∈ {0, 1}n×m as in [3,13], that has
a value Cij = 1 if playlist i contains song j, 0 otherwise. We
also define a weight mask Ω ∈ {ε, 1}n×m that has a ”confi-
dence” value Ωij = 1 one if the entry Cij is 1, and a small
value ε, otherwise (we use ε = 0.1). This follows the exam-
ple of implicit feedback problems [2], since a zero in matrix
C does not mean that the corresponding song is irrelevant to
the playlist, but that it is less probably relevant.

The goal of the training step is to find an approximate low-
rank representation AB ≈ C, where A ∈ Rn×r+ , B ∈ Rr×m+

non-negative and with small r. This problem is known as
Non-Negative Matrix Factorization (NMF) and has drawn a
lot of attention after the seminal work [14]. The advantage of
NMF over other factorization techniques is that the approxi-
mation is only based on adding factors, a property explained
as learning the parts of objects [14], in this case the playlists.
NMF comes to the cost of being NP-hard [15], so sophisti-
cated regularization is important for finding a good local min-
imum. In our problem we use outside information given by
the songs and playlists graphs to give structure to the factors
A and B. Our model is formulated as

min
A,B≥0

KL
(
Ω ◦ (C‖AB)

)
+ θA‖A‖TVA

+ θB‖B‖TVB
, (1)

where ◦ is the pointwise multiplication operator and θA, θB ∈
R+. We use a weighted Kullback-Leibler (KL) divergence as
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a distance measure between C and AB, that has been shown
to be more accurate than the Frobenius norm for various NMF
settings [16]. The second term is the TV of the rows of A on
the playlists graph, so penalizing it promotes piecewise con-
stant signals [11]. Similarly with the third term for columns
of B. Eventually, the proposed model leverages the works
of [9, 16], and extends them to graphs using the TV semi-
norm.

Graph Regularization with Total Variation. In our NMF-
based recommender, each playlist i is represented in a low-
dimensional space by a row Ai of the matrix A. In order to
learn better low-rank representations Ai of the playlists, we
also impose the pairwise similarities of the playlists wAii′ on
their corresponding low-rank representations. We can see this
from the definition of the TV regularization term, ‖A‖TVA

=
1
2

∑
i

∑
i′∼i w

A
ii′‖Ai −Ai′‖1. Hence, when two playlists i, i′

are similar then they are also well-connected on the graph and
the weight of the edge connecting these two playlists wAii′
is large (here wAii′ ≈ 1). Moreover, any large distance be-
tween the corresponding low-dimensional representation vec-
tors (Ai, Ai′) is penalized, forcing (Ai, Ai′) to stay close in
the low-dimensional space. In a similar way, each song j is
represented in a low-dimensional space by a columnBj of the
matrix B. If two songs (j, j′) are close (wBjj′ ≈ 1), so will be
(Bj , Bj′) with the graph regularization ‖B‖TVB

.

A similar idea has been used in [10] by incorporating
the graph information through Tikhonov regularization, i.e.
with the Dirichlet energy term 1

2

∑
i

∑
i′∼i w

A
ii′‖Ai − Ai′‖22.

However, the latter promotes smooth changes between the
columns ofA, while the graph TV term penalization promotes
piecewise constant signals with potentially sharp transitions
between columns Ai and Ai′ . This is advantageous in appli-
cations where well separated classes are sought, for example
in clustering [17], or in our recommendation system where
similar playlists might belong to different categories.

As we demonstrate in Sec. 4, the use of the graphs of
songs and playlists improve significantly the recommenda-
tions, while the results are better when the more forgiving
TV term is used instead of Tikhonov regularization.

Primal-dual optimization. Optimization problem (1) is
globally non-convex, but separately convex w.r.t. A and B.
A standard strategy is thus to optimize B for fixed A, then
optimize A for fixed B, and repeat until convergence. We
describe here the proposed optimization algorithm w.r.t. B
for fixed A based on [12, 16, 18]. The same algorithm can be
applied to A for fixed B. Let us rewrite problem (1) as:

min
B≥0

F (AB) +G(KBB), (2)

where

F (AB) = KL
(
Ω ◦ (C‖AB)

)
= (3)

m∑
i=1

n∑
j=1

(
− ΩijCij

(
log

(AB)ij
Cij

+ 1
)

+ Ωij(AB)ij

)
,

G(KBB) = θB‖B‖TVB
= θB‖KBB‖1, (4)

where KB ∈ Rne×m is the graph gradient operator [17], with
ne being the number of edges in the graph of B. Using the
conjugate functions F ? and G? of F and G, (2) is equivalent
to the saddle-point problem:

min
B≥0

max
Y1,Y2

tr((AB)T · Y1)− F ?(Y1) +

tr((KBT )T · Y2)−G?(Y2), (5)

where Y1 ∈ Rn×m, Y2 ∈ Rne×r. Let us now introduce the
proximal terms and the time steps σ1, σ2, τ1, τ2:

min
B≥0

max
Y1,Y2

tr((AB)T · Y1)− F ?(Y1) +

tr((KBT )T · Y2)−G?(Y2) +
τ1 + τ2
2τ1τ2

‖B −Bk‖2F

− 1

2σ1
‖Y1 − Y k1 ‖2F −

1

2σ2
‖Y2 − Y k2 ‖2F . (6)

The iterative scheme is thus for k ≥ 0:

Y k+1
1 = proxσ1F?(Y k1 + σ1AB

k), (7)

Y k+1
2 = proxσ2G?(Y k2 + σ2KBB

k), (8)

Bk+1 = (Bk − τ1ATY k+1
1 − τ2(KT

BY
k+1
2 )T )+, (9)

where prox is the proximal operator [12] and (·)+ = max(·, 0).
For our problem we have chosen the standard Arrow-Hurwicz
time steps σ1 = τ1 = 1/‖A‖ and σ2 = τ2 = 1/‖K‖, where
‖ · ‖ is here the operator norm.

The proximal solutions (7) and (8) are given by:

proxσ1F?(Y ) =
1

2

(
Y + Ω−

√
(Y − Ω)2 + 4σ1Ω ◦ C

)
proxσ2G?(Y ) = Y − shrink(Y, θB/σ2), (10)

where shrink is the soft shrinkage operator [19]. Note that the
same algorithm could be used for Tikhonov regularization,
i.e. replacing ‖KBB‖1 by G(KBB) = θB

2 ‖KBB‖22 by just
changing the first proximal (10) to proxσ2G?(Y ) = θB

σ2+θB
Y .

In [10] this regularization is used along with a symmetric ver-
sion of the KL divergence, however the latter has no analytic
solution unlike the one we use in this work. As a result their
objective function does not fit an efficient primal dual opti-
mization scheme like the one we propose. We thus choose to
keep the non symmetric KL model, denoted as GNMF in this
paper, in order to compare the TV versus Tikhonov regular-
ization.

Recommending songs. Once we have learned matrices A
and B by solving (1), we wish to recommend a new playlist
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crec given a few songs cin (see Fig. 1). We also want to
make real-time recommendations, so we design here a fast
recommender function as follows:

Given the songs cin, we first find a good representation
of the query on the learned low-rank space of playlists by
solving a regularized least squares problem:
ain = arg mina∈R1×r ‖Ωin ◦ (cin − aB)‖22 + ε‖a‖22. The
latter enjoys an analytic solution ain = (BTΩinB + εI)−1

(BTΩincin) that is cheap to compute as r is small (we use
ε = 0.01).

The recommended playlist can benefit from the playlists
that have similar representations as the one of the query,
thus we use the weighted sum arec =

∑n
i=1 wiAi/

∑n
i=1 wi

as the representation of the recommended playlist in the
low dimensional space. Here the weights wi are defined as
wi = e−‖ain−Ai‖22/σ

2

and depend on the distance of ain from
other playlists representations, while σ = meani({‖ain −
Ai‖2}ni=1)/4. The final recommended playlist uses the low-
rank representation arec:

crec = arecB. (11)

Note finally that the recommended playlist crec is not binary,
but with continued values that serve as song rankings.

3. GRAPHS OF PLAYLISTS AND SONGS

Playlists Graph. The playlists graph naturally encodes pair-
wise similarities between playlists. The set of nodes of this
graph is the set of playlists and the edge weight provides
the proximity between two playlists. A large weight (here
wAii′ ≈ 1) implies a strong proximity between the playlists.
In this work, the edge weight of the playlists graph uses both
“outside” information, i.e. the meta-data, and “inside” infor-
mation, i.e. the songs that form the playlists. As meta-data,
we use the predefined Art of the Mix playlist categories [20]
onto which users label their mixes. The edge weight of the
playlists graph is thus defined as follows:

wAii′ = γ1δcat{i}=cat{i′} + γ2 simcos(Ci, Ci′),

where cat stands for playlist category, Ci is the ith row of
matrix C and simcos(p, q) = p>q/(‖p‖.‖q‖) is the cosine
similarity distance between the vectors of the songs of the
two playlists. In our case, the cosine similarity is the ratio be-
tween the songs in common and the square root of the product
of the lengths of the two playlists. The two positive parame-
ters γ1, γ2 with γ1 + γ2 = 1 allow to weight the importance
of the playlist labels against their element-wise similarity. To
control the edge density in each category and to give more
flexibility to our recommendation model, we keep a random
subset of 20% of the edges between nodes of the same cate-
gory. As we find experimentally, γ2 = 0.3 constitutes a good
compromise, see Sec. 4.

The quality of the playlist graph is measured by partition-
ing the graph using the standard Louvain’s method [21]. The
number of partitions is automatically given by the modular-

High Level Features
acousticness Acoustic or electric?
valence Is the song positive or negative?
energy How energetic is the song?
liveness Is it a “live” recording?
speechiness How many spoken words?
danceability Is the song danceable?
tempo Normalized BPM.
instrumentalness Is the song instrumental?

Social Features
artist discovery How unexpectedly popular is the artist?
artist familiarity How familiar is the artist?
artist hotttnesss Is the artist currently popular?
song hotttnesss Is the song currently popular?
song currency How recently has it become popular?

Temporal Echonest Features
statistics on echonest segments Described in [22]

Metadata Features
genre ID3 genre extracted from tags given by LastFM api

Table 1. The features used to create graph of songs.

ity dendrogram which is cut where the modularity is max-
imal. The graph used in Sec. 4 has a modularity of 0.63
when using the cosine similarity (γ2 = 0) only. If we add
the meta-data information by connecting 20% of all playlist
pairs within each category with γ2 = 0.3, the modularity in-
creases to 0.82.

Songs Graph. The second graph used in our model is the
graph of song similarity. It is created from a mixture of Ech-
onest features extracted from the audio signal which we com-
bine with meta-data information and social features for the
track. Table 1 gives a view of the features used to create the
song graph.

In order to improve the quality of our audio features, we
trained a Large Margin Nearest Neighbors model [23] on
the song genres extracted from the LastFm associated terms
(tags). To extract real music genres we use the Levenshtein
distance between those terms weighted by their popularity
(according to LastFm) and the music genres defined in the
ID3 tags.

Eventually, the songs graph is created using the k nearest
neighbors (here k = 5) where the edge weight between two
songs j, j′ is given by wBjj′ = exp(−‖xj − xj′‖1 /σ) for j′

in the kth nearest neighbors of j. The parameter σ acts as
the scale parameter of the graph and is set to be the average
distance of the kth neighbors. The obtained graph has a high
modularity (0.64) and is quite pure with respect to song gen-
res with around 65% of accuracy using an unsupervised k-NN
classifier.

4. EXPERIMENTAL RESULTS

In this section we validate our approach by comparing our
model against three different recommender systems on a real
world dataset. Our test dataset is extracted from the Art-of-
the-Mix corpus created by McFee and al. in [20] onto which
we extract the previously described features.

Assessing the quality of any music recommender systems
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is well-known to be a challenging problem [7]. In this work,
we use a typical metric for recommender system with im-
plicit feedback, Mean Percentage Ranking (MPR) described
in [2] and the playlist category accuracy, that is the percent-
age of the recommended songs that have already been used in
playlists from the requested category in the past.

Models. We first compare our model against a graphs-only
based approach, labeled as Cosine only. For a given input,
this model computes the t-closest playlists (here t = 50) us-
ing cosine similarity. Songs are recommended by comput-
ing a histogram of all the songs contained in these playlists
weighted by the cosine similarity weight, as defined by eq.
(11). The second model is NMF using KL divergence, labeled
NMF [16]. The last model, GNMF [10] described in Sec. 2,
is based on the KL divergence with Tikhonov regularization
using the graphs of our model.

Queries. We test our model with three different types of
queries. In all cases, a query ctest contains s = 3 input
songs, and the system returns the top k = 30 output songs
as a playlist using eq. (11). The first type of queries, Ran-
dom, contains completely randomly chosen songs from all
categories and is solely used as a comparison baseline. The
second type of queries, Test, picks randomly 3 songs from a
playlist of the test set. Lastly, Sampled, contains randomly
chosen songs from a given category. It simulates a recom-
mender system based on chosen playlist categories input by a
user.

Training. We train our model using a randomly selected sub-
set of 70% of the playlists. As our model is not jointly convex,
initialization may change the performance of the system, so
we use the nowadays standard technique of NNDSVD [24]
to get a good approximate solution. In all our experiments a
value of the rank r = 15 performs well, which is expected
as each row has between 5 and 20 non-zero values. The best
set of parameters θA = 18 and θB = 1 is found using a grid
search using queries on the validation set. In order to prevent
overfitting, we perform early stopping as soon as the MPR on
the validation set ceases to increase.

Validation set. We create the “playlists” of the validation set
by creating artificial queries from the different playlist cate-
gories. That is, for each category we randomly pick s = 3
songs that have been previously used in user-made playlists
labeled by the given category.

Results. The performance in terms of playlist category ac-
curacy and MPR of the different models are reported in Ta-
ble 2 and Table 3 respectively. As expected, for random cate-
gory queries all models fail to return playlists from the cat-
egories of the input songs. At the same time, the perfor-
mance of NMF as collaborative filtering without the graphs
information is poor. This can be explained by the sparsity
of the dataset, that only contains 5 to 20 non-zero elements
per row, i.e. only 0.11-0.46% sparsity. Collaborative filtering

models are known to perform better as more observed ratings
are available [9]. The cosine model performs better in terms
of category accuracy, as it directly uses the cosine distance
between the input query and playlists from pure categories.
However, its high MPR value shows that our model, albeit
more complex, achieves better song recommendations.

Cosine NMF GNMF γ1 = 0 γ1 = 0.3
only [16] [10] γ2 = 1 γ2 = 0.7

Random 0.135 0.150 0.167 0.210 0.183
Test 0.530 0.236 0.332 0.544 0.646
Sampled 0.822 0.237 0.366 0.598 0.846

Table 2. Category accuracy for all models for different types
of 3-song queries (higher is better). Results are averaged over
10 train/validation runs with 300 queries each.

Cosine NMF GNMF γ1 = 0 γ1 = 0.3
only [16] [10] γ2 = 1 γ2 = 0.7

Test 0.208 0.248 0.181 0.153 0.146
Sampled 0.226 0.319 0.211 0.164 0.074

Table 3. Mean percentage ranking (MPR) for all models for
different types of 3-song queries (lower is better). Results are
averaged over 10 train/validation runs with 300 queries each.

Fig. 2. MPR for each playlist category on the test set. Our
models use the same parameters of Table 3. Ambiguous cat-
egories such as Rock, Punk have the highest MPR on the test
set. Our model outperforms significantly the others methods
on those specific categories.

5. CONCLUSION

In this work we introduce a novel flexible song recommender
system that combines collaborative filtering with playlist and
song proximity information encoded by graphs. We use a
primal-dual based optimization scheme to achieve a highly
parallelizable algorithm with the potential to scale up to very
large datasets. We choose graph TV instead of Tikhonov reg-
ularization and demonstrate the model’s superiority by com-
paring our system against three other recommendation mod-
els on a real music playlists dataset.
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