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ABSTRACT

Tensor robust principal component analysis (PCA) approaches have
drawn considerable interests in many applications such as back-
ground subtraction, denoising, and outlier detection, etc. In this
paper we propose an online tensor robust PCA where the multi-
dimensional data (tensor) is revealed sequentially in online mode,
and tensor PCA is updated based on the latest estimation and the
newly collected data. Compared to the tensor robust PCA in batch
mode, we significantly reduce the required memory and improve the
computation efficiency. Application on fusing cloud-contaminated
satellite images demonstrates that the proposed method shows supe-
riority in both convergence speed and performance compared to the
state-of-the-art approaches.

Index Terms— Tensor Robust PCA, online learning, t-SVD, se-
quential data, cloud removal

1. INTRODUCTION

Principal Component Analysis (PCA) is commonly applied for di-
mensionality reduction in modern data analysis. However, when the
data contains unintended artifacts such as gross corruptions or out-
liers, the classical PCA may fail. To solve this problem, a variety of
robust PCA (RPCA) models have been developed. One of the effec-
tive models is known as principal component pursuit [1], which guar-
antees to recover a low-rank matrix and a sparse component from
data under investigation with high probability given constraints on
the rank and the sparsity level.

Recently, the online or recursive RPCA problem has been intro-
duced, which aims to separate data samples in online mode, i.e., with
only the latest estimation and the newly collected data [2–4]. Unlike
the standard RPCA methods which need to save all the data sam-
ples, these online RPCA algorithms significantly reduce the storage
requirement and improve the computation efficiency.

For multidimensional data (tensor) of order greater than 2, it is
general to embed the high dimensional data into a vector space by
vectorizing the data points such that the conventional matrix-based
approaches can still be used. Although this vectorization process
works well in most cases, it restricts the effectiveness in extract-
ing information from the multidimensional perspective. Alterna-
tively, tensor algebraic approaches exhibit significant advantages in
preserving multidimensional information when dealing with data of
high order [?, 5–7]. However, it is very time-consuming for the ten-
sor RPCA approaches to compute in batch mode since all of the high
dimensional data needs to be stored and processed. To the best of our
knowledge there is no existing online version tensor RPCA, and our
work is to fill this gap.

To overcome the storage and computation efficiency problem,
inspired by the matrix online robust PCA algorithm [2], we devel-
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oped an online tensor RPCA algorithm. Our online tensor RPCA
is based on the tensor Singular Value Decomposition (t-SVD) struc-
ture proposed in [8–10]. The key idea behind this tensor algebraic
method is based on constructing group-rings along tensor fibers.
Then 2-D data can be seen as vectors with elements from this group-
ring. Subsequently, 3-D data can be seen as matrices with elements
from this group-rings. Our work extends the batch tensor RPCA
problem [5] and provide the benefit of sequential data collection,
which reduces the required memory and increases efficiency.

The paper is organized as follows. In Section 2 we introduce the
t-SVD structure which our algorithm lies in. In Section 3 we present
our proposed online tensor RPCA algorithm. Experiment results us-
ing the proposed method as well as two state-of-the-art algorithms
on multi-view cloud-contaminated images are reported in Section 4,
followed by conclusion drawn in Section 5.

2. OVERVIEW OF TENSOR ALGEBRAIC FRAMEWORK

In this section, we briefly describe the tensor structure used in this
paper, taking third-order tensor as an example. The development is
adapted from [5, 9, 11, 12].

2.1. Notations and Definitions

For a third-order tensor A of size n1 × n2 × n3, A(i, j, k) denotes
the (i, j, k)-th element of A and A(i, j, :) denotes the (i, j)-th tubal-
scalar. A(i, :, :) is the i-th horizontal slice, A(:, j, :) is the j-th lat-
eral slice, and A(:, :, k) or A(k) denotes the k-th frontal slice of A
respectively.

[Commutative Ring]. Let ~v ∈ R1×1×n3 be a n3-tuple, ori-
ented into the board. As illustrated in Fig. 1, we define the multipli-
cation operation (t-product) between two such n3-tuples ~u and ~v via
circular convolution which results in another n3-tuple ~w represented
by

~w(i) = ~u ∗ ~v =
∑n3−1

k=0
~u(k)~v((i− k) mod(n3)), (1)

where i = 0, 1, ..., n3 − 1. Under the defined multiplication (t-
product) and the usual addition, the set of n3-tuples forms a com-
mutative ring R(Gn3) with the identity given by ~e = [1, 0, 0, ..., 0].
In the following we will refer to these n3-tuples oriented into the
board as tubes or tubal-scalars.

[Remark]. Given two third-order tensors A ∈ Rn1×n2×n3 and
B ∈ Rn2×n4×n3 , the result of the t-product of A and B is a third-
order tensor C of size n1 × n4 × n3 defined as

C(i, l, :) = A ∗B =
∑n2

j=1
A(i, j, :) ∗B(j, l, :), (2)

where i = 1, 2, ..., n1 and l = 1, 2, ..., n4. This is consistent with
the multiplication between matrices with the t-product ‘∗’ corre-
sponding to the multiplication operation.

[Free-Module over the commutative ring]. Let Mn1
n3

be a set
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Fig. 1: Multiplication(t-product) over the commutative ring

of all 2-D lateral slices of size n1 × 1× n3. Every element in Mn1
n3

can be viewed as a vector of tubal-scalars. Since for any element
~X ∈ Mn1

n3
and coefficient v ∈ R(Gn3), ~Y = ~X∗v is also an element

of Mn1
n3

, Mn1
n3

is closed under the tubal-scalar multiplication.
Moreover, Mn1

n3
is a free module of dimension n3 over the com-

mutative ring R(Gn3) [8, 11]. Free module property means that
one can construct a spanning basis {~B1, ~B2, ..., ~Bn3} for this mod-
ule using the relation between Fourier transform and circular con-
volution. Given the spanning basis, any element ~X ∈ Mn1

n3
can

be uniquely represented as a t-linear combination with some tubal-
scalar coefficients ~c

−→
X =

∑n3

i=1

−→
Bi ∗ ~ci, (3)

as illustrate in Fig. 2.

Fig. 2: An element of a free module generated by t-linear combina-
tion of spanning basis and coefficients.

2.2. Tensor-PCA and Tensor Singular Value Decomposition

Similar to the matrix PCA where we try to identify the lower-
dimensional subspace which the data approximately lies in, we
consider tensor PCA for high-order tensor data. In this paper, we
focus on third-order tensors. Suppose the 2-D data samples come
from a lower dimensional free submodule of the free module Mn1

n3
,

where a free submodule is a subset of Mn1
n3

with a spanning basis of
dimension d < n. Our goal is to identify this free submodule which
the 2-D data samples lie in.

[t-SVD]. Given n2 2-D data samples ~X1, ..., ~Xn2 of size n1 ×
n3, we arrange them as lateral slices to make a 3-D tensor X of
size n1 × n2 × n3. The t-SVD method is then used to compute the
spanning basis (principal components) of this free submodule [12].
Specifically, t-SVD is defined as 1

X = U ∗ S ∗ VT, (4)

as shown in Fig. 3, where U ∈ Rn1×d×n3 and V ∈ Rn2×d×n3 are
called orthogonal tensors which satisfy UT ∗U = I and VT ∗ V =
I. I is the identity tensor whose frontal slices are all zeros except
the first one an identity matrix. S ∈ Rd×d×n3 is a tensor whose
frontal slices are diagonal matrices. The tubal scalars S(i, i, :), i =
1, 2, ..., d into the board are called singular tubes and d is the tensor
tubal-rank [5].

Based on the relation between the circular convolution and the
Discrete Fourier Transform (DFT), we can compute t-SVD via SVD
in the Fourier domain. Let X̂ be the DFT along the third dimension
of tensor X represented by X̂ = fft(X, [ ], 3). Given SVD in the

1For any A ∈ Rn1×n2×n3 , AT ∈ Rn2×n1×n3 is obtained by trans-
posing each of the frontal slices and then reversing the order of transposed
frontal slices 2 through n3.

Fig. 3: t-SVD of an n1 × n2 × n3 tensor.

Fourier domain [Û(:, :, k), Ŝ(:, :, k), V̂(:, :, k)] = SVD(X̂(:, :, k)),
for k = 1, ..., n3, we can compute t-SVD in (4) by

U = ifft(Û, [ ], 3),S = ifft(Ŝ, [ ], 3),V = ifft(V̂, [ ], 3). (5)

Note that many properties of matrix SVD are retained in t-SVD,
among which an important one is the optimality of truncated t-SVD
for provably optimal dimension reduction [9].

3. ONLINE TENSOR ROBUST PCA

Now we consider the problem of recovering a tensor of low dimen-
sional submodule from sparsely corrupted observations. Before go-
ing to the online version, we start with the batch setting. Suppose we
have a third-order tensor Z which can be decomposed as,

Z = X + E, (6)

where X is a tensor with low tensor tubal rank and E is a sparse
tensor. The problem of recovering X and E separately, termed tensor
RPCA [5], can be formulated as an optimization problem 2

min
X,E

1

2
‖Z−X− E‖2F + λ1‖X‖TNN + λ2‖E‖1, (7)

where ‖X‖TNN =
∑
i,j Ŝ(i, i, j) denotes the tensor nuclear norm

and it’s a convex relaxation of the tensor tubal rank [5]; ‖E‖1 =∑
i,j,k |E(i, j, k)|; and λ1, λ2 > 0.

Now we describe an implementation of tensor robust PCA
that operates online. Suppose the 2-D data samples Z(:, i, :), i =
1, 2, ..., T are observed sequentially. Our goal is to estimate the
spanning basis (principal components) of X on the fly, and separate
the sparse tensor simultaneously. In order to proceed we introduce
the following lemma without proof to save space.

Lemma 3.1. For a third-order tensor X ∈ Rn1×n2×n3 , suppose its
tensor tubal rank is upper bounded by r, then we have

‖X‖TNN = inf
L∈Rn1×r×n3

R∈Rn2×r×n3

{n3

2
(‖L‖2F + ‖R‖2F ) : X = L ∗RT

}
.

(8)

Using the above lemma, we re-write (7) as

min
L,R,E

1

2
‖Z−L ∗RT − E‖2F +

n3λ1

2
(‖L‖2F + ‖R‖2F )

+ λ2‖E‖1 s.t. X = L ∗RT,

(9)

where L ∈ Rn1×r×n3 , R ∈ Rn2×r×n3 . For sequentially observed
data {

−→
Z 1,
−→
Z 2, ...,

−→
ZT } ∈ Rn1×1×n3 , we define the loss function

2In [5] the authors use ‖.‖1,1,2 norm as the complexity of the “tubal-
sparsity” of tensors in the third-dimension. Here we consider a general case
of sparsity of S, therefore ‖.‖1 norm is utilized.
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for each sample based on (9) as

`(
−→
Z i,L) = min−→

R ,
−→
E

1

2
‖
−→
Z i−L∗

−→
R

T−
−→
E ‖2F+

n3λ

2
‖
−→
R‖2F+λ2‖

−→
E ‖1.

(10)
We summarize our online tensor RPCA approach in Algo-

rithm 1. For simplicity, we denote the output of fft(A, [ ], 3) with

wide-hat symbol Â = [Â
(1)
, Â

(2)
, · · · , Â

(n3)
], and let bar symbol

A ∈ Rn1n3×n2n3 be the block diagonal matrix defined by

A = blkdiag(Â
(1)
, Â

(2)
, · · · , Â

(n3)
). (11)

The key idea of our online tensor RPCA algorithm is that at
each time round t, we minimizes the loss function over

−→
Z t given

the previous estimation Lt−1, to get the optimal
−→
R t and

−→
E t. Then

we alternately use the latest estimated components to update the
spanning basis Lt via minimizing the cumulative loss.

Specifically,
−→
R t and

−→
E t are optimized in Step 3 with detailed

description in Algorithm 2. In the data projection step in Algo-
rithm 2, Sλ[·] is a soft-thresholding operator defined by [13],

Sλ[x] =

{
x− λ, if x > λ
x+ λ, if x < −λ
0, otherwise.

(12)

To update the spanning basis Lt, we have

Lt = argmin
L

t∑
i=1

(1

2
‖
−→
Z i −L ∗

−→
R

T
i −
−→
E i‖2F

+
n3λ1

2
‖
−→
R i‖2F + λ2‖

−→
E i‖1

)
+
n3λ1

2
‖L‖2F

= argmin
L

1

2
‖Zt − Et −L ∗RT

t ‖2F +
n3λ1

2
‖L‖2F

= argmin
L

1

2
‖Zt − Et −LR

T
t ‖2F +

n3λ1

2
‖L‖2F

= argmin
L

1

2
tr
(
(Zt − Et −LR

T
t )T(Zt − Et −LR

T
t )
)

+
n3λ1

2
tr(LT

L)

= argmin
L

1

2
tr
(
L(RT

t Rt + n3λ1I)L
T)− tr(LT(Zt − Et)Rt).

Let At = At−1 +
−→
R t ∗

−→
RT
t and Bt = Bt−1 + (

−→
Z t −

−→
E t) ∗

−→
RT
t ,

as indicated in Step 4 of Algorithm 1, where
−→
R t ∈ Rr×1×n3 ,

−→
E t ∈

Rn1×1×n3 . We update At,Bt each time new data comes and save
the updated ones such that we can update the spanning basis L in
the Fourier domain with block-coordinate descent [2], as indicated
in Step 5 of Algorithm 1 with details in Algorithm 3. Note that our
algorithm needs a prior information about estimated upper bound of
the rank of the overall data samples.

As regarding to the storage needed, for the batch tensor robust
PCA all the data samples up to time T , i.e., the total number of
entries in {Zi}Ti=1, are required. Therefore the storage requirement
for the batch tensor robust PCA is n1n3T . While for online tensor
robust PCA, we need to save Lt−1 ∈ Rn1×r×n3 , RT ∈ RT×r×n3

(AT can be computed through RT ), BT ∈ Rn1×r×n3 , and the total
storage requirement is n3rT + n1n3r, which is much smaller than
that of the batch tensor robust PCA when r << T .

Algorithm 1 Online Tensor Robust PCA

Input :Sequentially observed data ZT = {
−→
Z 1, ...,

−→
ZT } ∈

Rn1×1×n3 . λ1, λ2 > 0, number of rounds T .
Initial: L0 ∈ Rn1×r×n3 ,

−→
R0 ∈ Rr×1×n3 ,

−→
E 0 ∈ Rn1×1×n3 .

1: for t = 1, 2, ..., T do
2: Reveal data sample

−→
Z t.

3: Project the new sample(See Algorithm 2):

{
−→
R t,
−→
E t} = argmin

−→
R∈Rr×1×n3
−→
E∈Rn1×1×n3

1

2
‖
−→
Z t −Lt−1 ∗

−→
R −

−→
E ‖2F

+
λ1

2
‖
−→
R‖2F + λ2‖

−→
E ‖1

4: Compute At = At−1 +
−→
R t ∗

−→
RT
t , Bt = Bt−1 + (

−→
Z t −−→

E t)∗
−→
RT
t , and then block diagonal matrices At and Bt using

Ât = fft(At, [ ], 3), B̂t = fft(Bt, [ ], 3) according to (11) .
5: Update spanning tensor basis Lt (See Algorithm 3):

Lt , argmin

L

1

2
tr[LT(At + n3λ1I)L]− tr(LT

Bt).

6: Organize the block diagonal Lt into the tensor form L̂t and
let Lt = ifft(L̂t, [ ], 3).

7: end for
8: RT (t, :, :) =

−→
RT
t ,ET (:, t, :) =

−→
E t, t = 1, 2, ..., T .

9: Return XT = LT ∗RT
T and ET .

Output: Low tubal rank tensor XT and sparse tensor ET .

4. EXPERIMENTAL RESULTS

We consider the cloud removal problem on satellite images. A total
of 24 cloud contaminated images captured by Landsat 7 ETM+ and
Landsat 8 OLI near Harz, Germany over a period of time are used in
our numerical experiments [14]. Each image is of size 598× 1070.
The image backgrounds change slightly and the variability is mainly
caused by the clouds and their shadows. Two example images are
shown in Fig. 4. Considering the fact that the images are captured
sequentially with restricted onboard storage, we use tensor online
RPCA to perform cloud removal process such that clear images can
be generated. Each time we receive an image from the satellite of
this area, we directly estimate the spanning basis without saving all
the past images but only the latest estimation and the newly collected
data.

Fig. 4: Example images of the same location taken by Landsat 7
ETM+ and Landsat 8 OLI on different days. A total of 24 images
are used in our experiments.

To perform the proposed algorithm, images are normalized to
have intensity of [0, 1] and reshaped as a lateral slice ~zi of size 598×
1 × 1070. In the experiments we set r = 3 as a upper bound of the
tensor tubal rank since the background is barely changing without
clouds and shadows and λ1 = λ2 = 1/

√
598. The results are shown
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Algorithm 2 Projecting data samples

Input: Lt−1 ∈ Rn1×r×n3 ,
−→
Z t ∈ Rn1×1×n3 , λ1, λ2 > 0.

Initial:
−→
E t = 0, r̂t ∈ Cr×1×n3 .

1: ẑt = fft(
−→
Z t, [ ], 3), L̂t−1 = fft(Lt−1, [ ], 3).

2: while not converge do
3: for i = 1, 2, ..., n3 do
4: r̂

(i)
t = ((L̂

(i)

t−1)TL̂
(i)

t−1 + λ1I)
−1(L̂

(i)

t−1)T(ẑ
(i)
t − ê

(i)
t ).

5: end for
6:

−→
R t = ifft(r̂t, [ ], 3).

7:
−→
E t = Sλ2 [

−→
Z t −LT

t−1 ∗
−→
R t].

8: end while
Output:

−→
R t and

−→
E t.

Algorithm 3 Update spanning tensor basis

Input: Lt−1 ∈ Rn1×n2×n3 ,At ∈ Rr×r×n3 ,Bt ∈ Rn1×r×n3

1: Lt = Lt−1, L̂t = fft(Lt, [ ], 3).
2: B̂t = fft(Bt, [ ], 3).
3: Ct = At + λ1I, Ĉt = fft(Ct, [ ], 3).
4: for j = 1, 2, ..., r do
5: for k = 1, 2, ..., n3 do
6: L̂t(:, j, k) = B̂t(:,j,k)−L̂t(:,:,k)∗Ĉt(:,j,k)

Ĉt(j,j,k)
+ L̂t(:, j, k).

7: end for
8: end for

Output: Lt = ifft(L̂t, [ ], 3).

in Fig. 5, in which the top row and the bottom row represents the low
tubal rank parts and the sparse parts respectively. It is clear that the
cloud and shadow contaminated areas are well recovered using our
online tensor RPCA method.

Fig. 5: Tensor online Robust PCA results on the images shown in
Fig. 4. The top row images show the low tubal rank components and
the bottom row images show the sparse components.

In order to further evaluate our algorithm, we compare the tensor
online robust PCA to the matrix online robust PCA [2] and the Grasta
streaming [3]. Here we synthesize a total number of 500 cloud-free
images of the same location but different time as ground truth tensor
G. The images are of size 100 × 100 and intensity normalized to
[0, 1]. We randomly add zero-mean Gaussian noise with standard
deviation 10 to sparse locations of the images and use them as our
input data samples Z. The sparsity level varies from 0.02 to 0.2. We
run over all the possible ranks using the tensor online robust PCA
and the matrix online robust PCA, then choose the ranks which give

the best performance on the two algorithms. In tensor online robust
PCA, λ1 = λ2 = 1/

√
100 = 0.1. For matrix online robust PCA

and the Grasta streaming, each time the data image is vectorized
into a long vector as input. At each round t we compute the relative
square error up to time t defined as

RSE(t) = ‖Xt − Gt‖F /‖Gt‖F , (13)

where Xt and Gt are the low rank component and ground truth we
get up to time t, respectively. The performance is compared in Fig. 6.
We can tell that our tensor online RPCA has a smaller relative square
error comparing to the matrix online robust PCA and Grasta stream-
ing on all sparsity levels.

Fig. 6: Comparison of tensor online robust PCA, matrix online ro-
bust PCA, and Grasta streaming version.

Figure 7 shows the convergence speed of the three algorithms
when the sparsity level of the Gaussian noise is equal to 0.2. Our
tensor online robust PCA converges the fastest among the three.
Consequently, when the total number of data samples are small, our
proposed algorithm is more efficient and accurate than the other two
methods.

Fig. 7: Convergence speed comparison when the sparsity of Gaus-
sian noise is 0.2.

5. CONCLUSION AND FUTURE WORK

In this paper, a novel tensor online robust PCA method has been in-
troduced. Comparing to the batch mode PCA methods, it is more
efficient and faster since it is not necessary to store all the data sam-
ples. In addition, our algorithm is different from the matrix based
online learning algorithms in treating high-order data as a “lateral
slice” from the multidimensional perspective. Experimental results
on cloud removal of the satellite images demonstrate that the pro-
posed tensor online RPCA algorithm outperforms significantly over
the state-of-the-art algorithms in both convergence speed and perfor-
mance. In future work it is of interest to perform theoretical analysis
on the performance and convergence of this algorithm and employ
other tensor algebra to it.
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