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ABSTRACT
In this paper, we propose an approach to interpret the predic-
tion process of the BP-sLDA model, which is a supervised
Latent Dirichlet Allocation model trained by Back Propaga-
tion over a deep architecture. The model is shown to achieve
state-of-the-art prediction performance on several large-scale
text analysis tasks. To interpret the prediction process of the
model, often demanded by business data analytics applica-
tions, we perform evidence analysis on each pair-wise deci-
sion boundary over the topic distribution space, which is de-
composed into a positive and a negative components. Then,
for each element in the current document, a novel evidence
score is defined by exploiting this topic decomposition and
the generative nature of LDA. Then the score is used to rank
the relative evidence of each element for the effectiveness of
model prediction. We demonstrate the effectiveness of the
method on a large-scale binary classification task on a corpo-
rate proprietary dataset with business-centric applications.

Index Terms— Topic model, BP-sLDA, mirror descent,
back propagation, deep architecture

1. INTRODUCTION

Probabilistic topic models such as Latent Dirichlet Alloca-
tion (LDA) [1, 2] has been successfully applied to diverse
tasks of text modeling and analysis. Supervised topic mod-
els [3–7], which use the additional label information to help
with the modeling, have been shown to have the improved
modeling ability and better prediction performance than the
vanilla LDA. Recently, mirror-descent back propagation has
been successfully applied to perform end-to-end discrimina-
tive learning of the supervised topic model (aka BP-sLDA). It
has achieved much better performance than the prior-art su-
pervised topic models, the traditional discriminative models
such as logistic/linear regression, neural network, and is even
on par with highly successful deep neural network (DNN)
[8,9] on several large-scale text classification/regression tasks
[10]. Moreover, different from DNNs [8, 11], the BP-sLDA
model, as a probabilistic generative model, characterizes the
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Fig. 1. Graphical representation of the supervised LDA
model. Shaded nodes are observables.

internal dependency of the latent and observed variables un-
der a probabilistic framework. This allows the model to be
more interpretable than pure black-box models such as an
DNN, while retaining good prediction performance [12]. This
interpretability is a highly desirable property often benefiting
applications in business data analytics.

In this paper, we develop an approach to interpret the “ev-
idences” that BP-sLDA uses to perform its prediction, mainly
in the classification scenario. We perform evidence analysis
of each pair-wise decision boundary over the topic distribu-
tion space, which is decomposed into a positive and a negative
components. Then, a novel metric is defined by the genera-
tive nature of the topic model to rank different evidences of
prediction inside each document. The developed method is
then applied to a large-scale text classification task using a
proprietary corporate dataset.

2. AN OVERVIEW OF THE BP-SLDA

In this section, we briefly review the BP-sLDA model. Con-
sider the graphical model in Fig. 1. Let K be the number of
topics, N be the number of words in each document, V be the
vocabulary size, and D be the number of documents in the
corpus. The generative process of the model in Fig. 1 can be
described as:

1. For each document d, choose the topic proportions ac-
cording to a Dirichlet distribution: θd ∼ p(θd|α) =
Dir(α), where α is a K × 1 vector consisting of non-
negative components.

2. Draw each column φk of a V × K matrix Φ inde-
pendently from an exchangeable Dirichlet distribution:
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Fig. 2. BP-sLDA performs discriminative learning by back
propagating over a deep mirror-descent architecture.

φk ∼ Dir(β) (i.e., Φ ∼ p(Φ|β)), where β > 0 is the
smoothing parameter.

3. To generate each word wd,n, first, choose a topic
zd,n ∼ p(zd,n|θd) = Multi(θd), where Multi(·) de-
notes a multinomial distribution. Then, choose a word
wd,n ∼ p(wd,n|zd,n,Φ) = Multi(φzd,n).

4. Choose the C × 1 response vector: yd ∼ p(yd|θ, U, γ).
In the classification scenario considered in this pa-
per, p(yd|θd, U, γ) = Mult

(
Softmax(γUθd)

)
, where

Softmax(x)c = exc∑C
c′=1

exc′
, c = 1, . . . , C.

The model in Fig. 1 is slightly different from the one in [3],
where the response variable yd in Fig. 1 is coupled with
θd instead of zd,1:N as in [3]. This modification leads to
a differentiable end-to-end cost trainable by back propa-
gation with superior prediction performance. Specifically,
BP-sLDA is trained by maximizing the posterior proba-
bility

∏D
d=1 p(yd|wd,1:N ,Φ, U) [10], and it consists of a

deep mirror-descent [13–16] architecture for computing the
maximum-a-posterior estimate of θd to sample the poste-
rior probability p(yd|wd,1:N ,Φ, U), and a back propagation
process over the same architecture for computing the stochas-
tic gradient (see Fig. 2). The model is then updated via
stochastic mirror descent (SMD) (see [10] for the details).
After the training, the feed forward architecture is used to
predict the output variable yd given input wd,1:N . With such
end-to-end discriminative training, it was shown in [10] that
the prediction performance of BP-sLDA is on par or even
better than that of deep neural networks (DNN), and sig-
nificantly outperforms traditional supervised topic models
and other discriminative models (e.g., logistic regresssion,
neural network, etc.). Moreover, unlike DNN, which is less
interpretable, the BP-sLDA model retains special structures
designed from the probabilistic generative model, which can
be used to interpret the prediction process, as we proceed to
explain in sequel.

3. INTERPRETING THE PREDICTION PROCESS

In this section, we develop an approach to interpret the pre-
diction process of the BP-sLDA model.

3.1. Evidence analysis over topic distributions

In BP-sLDA, the feed forward architecture in Fig. 2 computes
the MAP estimate of p(θd|wd,1:N ,Φ, α):

θd,L ≈ θ̂d|wd,1:N
= arg max

θd∈PK

p(θd|wd,1:N ,Φ, α) (1)

where θ̂d|wd,1:N
denotes the MAP estimate of θd given the d-th

document consisting of words wd,1:N , and the approximation
is due to using a finite number of mirror descent layers. Then,
the posterior probability of yd given inputwd,1:N is computed
according to

p(yd|wd,1:N ,Φ, U, α, γ)

=

∫
p(yd|θd, U, γ)p(θd|wd,1:N ,Φ, α)dθd

= Eθd|wd,1:N
[p(yd|θd, U, γ)] ≈ p(yd|θd,L, U, γ) (2)

where in the last step the expectation is sampled by the MAP
estimate, and p(yd|θd, U, γ) assumes the following form for
classification case:

p(yd = c|θd,L, U, γ) =
exp(γucθd,L)∑C

c′=1 exp(γuc′θd,L)
(3)

where c = 1, . . . , C andC is the total number of classes1, and
uc denotes the c-th row of the matrix U . Expressions (1)–(2)
imply that the deep mirror-descent architecture in Fig.2 is in-
deed extracting the topic distribution as the high-level features
from the d-th document, and then feeds them into a multi-
class logistic regression for classification.

To interpret the entire prediction process, we first analyze
the decision making from θd,L to yd in (3). After the posterior
probability p(yd|wd,1:N , U, γ) is computed according to (2),
the d-th input document will be classified according to

c = arg max
c′=1,...,C

p(yd = c′|wd,1:N , U, γ) (4)

i.e., we use (4) to generate the predicted class. We now pro-
ceed to analyze how the model chooses to believe that c is
the class associated with the d-th document. First, note that
expression (4) is also equivalent to

ln
p(yd = c|wd,1:N , U, γ)

p(yd = c′|wd,1:N , U, γ)
> 0, ∀c′ 6= c (5)

which is further equivalent to the following pair-wise decision
rule after substituting (3) into (5):

ucc′θd,L > 0, ∀c′ 6= c (6)

1We use 1-hot coding to represent each class in our implementation.
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where ucc′ , uc − uc′ . Let ucc′,j and θd,L,j denote the j-
th element of the vectors ucc′ and θd,L, respectively. Then,
expression (6) can be rewritten as

K∑
j=1

ucc′,jθd,L,j > 0, ∀c′ 6= c (7)

where the left-hand side is a sum of K terms. Eq. (7) defines
a pairwise decision boundary between the two classes, c and
c′. As long as the inequality (7) holds for all c′ 6= c, the class c
is the MAP decision according to (4). Therefore, to interpret
how the BP-sLDA model predicts c for the d-th document,
it suffices to examine each of the C − 1 pair-wise decision
boundaries.

Note that θd,L,j is always nonnegative as it represents the
probability of the j-th topic in the d-th document. Therefore,
we can partition all the ucc′,j , j = 1, . . . ,K into two subsets
consisting of the positive ucc′,j and the negative ucc′,j , re-
spectively. Then the positive ucc′,j would make the classifier
(7) prefer class c over c′, while the negative ucc′,j makes the
classifier prefer c′, and the final decision is based on whether
the weighted sum (of all the evidences) is positive. For this
reason, ucc′,j is defined as the weight of evidence (WOE), and
the entire sum is called the evidence of the decision. Further-
more, for each particular pair-wise decision boundary (7), the
topics can be decomposed into two categories: the ones asso-
ciated with positive ucc′,j and the ones associated with neg-
ative ucc′,j , which are the positive and negative “evidences”,
respectively. More formally, let Jcc′,+ and Jcc′,− denote the
two sets consisting of the topics associated with the positive
and negative WOEs, respectively. Introduce

θ+d,cc′,j ,


θd,L,j∑

k∈J
cc′,+

θd,L,k
if ucc′,j ≥ 0

0 if ucc′,j < 0
(8)

θ−d,cc′,j ,

0 if ucc′,j ≥ 0
θd,L,j∑

k∈J
cc′,−

θd,L,k
if ucc′,j < 0

(9)

and let θ+d,cc and θ−d,cc′ be the vectors that collect θ+d,cc′,j (j =

1, . . . ,K) and θ−d,cc′,j (j = 1, . . . ,K), respectively. Note that
both θ+d,cc and θ−d,cc′ are normalized to add up to one.

3.2. Interpreting the positive and negative topics

So far we have discussed how the multi-class logistic regres-
sion accumulates the positive and negative evidences for each
pairwise decision, and how it partitions the topic space into
positive and negative parts. We now proceed to develop an
approach to propagate the analysis into the input space.

It was shown in [10] that the probability of the d-th input
document given the topic distribution θd can be expressed as

p(wd,1:N |θd,Φ) = p(xd|θd,Φ) =

V∏
v=1

(K∑
j=1

θd,jΦvj

)xd,v

(10)

where xd,v denotes the term frequency of the v-th word (in
vocabulary) inside the d-th document, and xd denotes the
V -dimensional bag-of-words vector of the d-th document.
Note from (8)–(9) that θ+d,cc and θ−d,cc′ are the positive and
the negative topic distributions of the d-th document, respec-
tively, with respect to the current decision boundary between
c and c′. One useful property of such a probabilistic gen-
erative model is that we can sample the input documents
for θ+d,cc′ and θ−d,cc′ according to p(wd,1:N |θ+d,cc′ ,Φ) and
p(wd,1:N |θ−d,cc′ ,Φ), respectively. In this paper, however, we
do not perform such sampling for θ+d,cc′ and θ−d,cc′ , since our
objective is to identify in the existing d-th document the clues
for making the positive (negative) decision. Consider the
following log-likelihood ratio (LLR) of the d-th document
between the positive and the negative topic distributions:

ln

(
p(wd,1:N |θ+d,cc′ ,Φ)

p(wd,1:N |θ−d,cc′ ,Φ)

)
=

V∑
v=1

xd,vηd,cc′,v (11)

where ηd,cc′,v is the score of evidence defined as

ηd,cc′,v , xd,v ln

(∑K
j=1 θ

+
d,cc′,jΦvj∑K

j=1 θ
−
d,cc′,jΦvj

)
(12)

Observe that the log-likelihood ratio (11) is a sum of V terms,
where each term characterizes how the v-th term contributes
to the total LLR. If the BP-sLDA model chooses c as the pre-
dicted class for the d-th document (according to (4)), then for
each element in the d-th document, we can use ηd,cc′,v to rank
its evidence for preferring class c over any other class c′.

4. EXPERIMENTS

4.1. Prediction Performance

To examine the effectiveness of the analysis method devel-
oped in this paper, we consider a binary classification task on
a corporate proprietary dataset with application to business-
centric applications. The dataset consisting of a training set
of 1.2 million documents, a development set of 149K docu-
ments and a test set of 149K documents, with the vocabulary
size being 128K. A BP-sLDA model with K = 200 topics
and L = 10 mirror-descent layers is trained on the dataset,
and the hyper parameters are tuned on the development set.
Moreover, we also trained a logistic regression and a neural
network (200 tanh units) as the baselines. The AUC (area-
under-the-curve) and the accuracy on the test set are shown

Table 1. Prediction performance. LR stands for logistic re-
gression, and NN stands for neural network.

Model BP-sLDA LR NN
AUC 93.49% 90.56% 91.99%

Accuracy 86.00% 82.95% 84.67%
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Table 2. Examples of BP-sLDA prediction and the top evidences.
Truth Prediction Top three terms with highest evidences and the score ηd,cc′,v

0 0.001 Country/Turkey: 0.27 CustomerCode/xxx1: 0.24 EngagementName/sam: 0.10
0 0.014 RecommendationCode/xx3: 0.58 Country/Brazil: 0.20 City/Rio: 0.183
0 0.001 RecommendationCode/xx3: 0.69 Country/Thailand: 0.42 Currency/baht: 0.27
0 0.348 RecommendationCode/xx3: 0.46 Country/Ukraine: 0.28 ProductFamily/server: 0.21
0 0.025 RecommendationCode/xx3: 0.74 Country/Paraguay: 0.20 Program/assurance: 0.12
1 0.999 Country/China: 0.79 Currency/USD: 0.39 RecommendationCode/xx0: 0.42
1 0.907 Country/United States: 0.50 RecommendCode/xx3: 0.41 EngagementName/onsite: 0.33
1 0.999 Currency/AUD: 0.94 Engagement/1: 0.51 RecommendationCode/xx0: 0.11
1 0.992 RecommendationCode/xx0:1.08 Country/Japan:0.59 CurrencyName/JPY: 0.44
1 0.933 ProductName/Tablet A: 0.60 Currency/USD: 0.32 ServicesEngagement/1: 0.26

in Table 2, which clearly shows that BP-sLDA outperforms
other methods.
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Fig. 3. Example of ucc′,j (weight of evidence). The result is
obtained from a binary classification task described in Sec. 4.
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Fig. 4. Example of decomposing the topic distribution into a
positive part and a negative part.

4.2. Weight of Evidence and Topic Decomposition

After the BP-sLDA model is trained, we analyze the weight
of evidence, ucc′,j , over the topic distribution space according
to (7), which is shown in Fig. 3. In this task, we only have two
classes, i.e., positive and negative classes. The positive WOE

in Fig. 3 implies that the corresponding topic is relevant to
positive decision and vice versa. Moreover, in Fig. 4, we
show an example of the topic distribution of a document, and
its decomposition into positive and negative parts.

4.3. Interpreting Prediction Results

We now focus on applying (11)–(12) to interpret the predic-
tion of BP-sLDA on this task. In Table 2, we show ten exam-
ples of the prediction and its interpretation analysis, includ-
ing five positive examples and five negative examples. Each
row represents one sample (document) in the test set. We list
the ground truth class (in the first column) associated with
each sample, the predicted probability of the sample being
positive (in the second column), and the top three terms and
their corresponding values of ηd,cc′,v (in the third to the fifth
columns). For privacy reasons, we anonymize some of the
information. Higher ηd,cc′,v scores implies the term is more
relevant to making this particular prediction from BP-sLDA.
The results show strong correlation between the label with
some terms such as the countries, a certain Recommendation
Code in the business process. Such result is useful in helping
us understand how the model judges the input data and makes
a particular prediction.

5. CONCLUSION

We have proposed an approach to interpret the prediction pro-
cess of the BP-sLDA model by performing evidence analysis
of the topic distribution space, which is decomposed into a
positive and a negative components. A novel evidence score
has been introduced for each element in the current document
to rank its relative evidence for making a particular prediction.
The effectiveness of the analysis method is demonstrated on
a large-scale binary classification task on a corporate propri-
etary dataset with business-centric applications. The method
is also directly applicable to multi-class cases. Quantitative
evaluation of the interpretation results is left as our future
work.
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