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ABSTRACT

A simple but effective method is proposed for learning compact
random feature models that approximate non-linear kernel meth-
ods, in the context of acoustic modeling. The method is able to
explore a large number of non-linear features while maintaining a
compact model via feature selection more efficiently than existing
approaches. For certain kernels, this random feature selection may
be regarded as a means of non-linear feature selection at the level of
the raw input features, which motivates additional methods for com-
putational improvements. An empirical evaluation demonstrates the
effectiveness of the proposed method relative to the natural baseline
method for kernel approximation.2

Index Terms— Kernel Methods, Acoustic Modeling, Feature
Selection, Logistic Regression, Neural Networks.

1. INTRODUCTION

Kernel methods are statistically effective methods for non-linear
learning [1], but they are computationally difficult to use with large
data sets. Indeed, the Θ(n2) size of the kernel matrix is a bottleneck
in training with data sets of size n, and the typical Θ(n) size of the
resulting models [2] makes them prohibitive for deployment.

Much recent effort has been devoted to the development of ap-
proximations to kernel methods, primarily via the Nyström approx-
imation [3] or via random feature expansion [e.g., 4, 5]. These
methods yield explicit feature representations on which linear learn-
ing methods can provide good approximations to the original non-
linear kernel method. However, these approximations may be rather
coarse, and theoretical analysis suggest that the size of the feature
representations may also need to grow linearly with n for these meth-
ods to be effective. These limitations of kernel methods and their
approximations have hindered their application in many large-scale
settings.

In this work, we propose a simple but effective method for learn-
ing compact random feature models that approximate non-linear ker-
nel methods. We iteratively select features from large pools of ran-
dom features, using learned weights in the selection criterion. This
has two clear benefits: (i) the subsequent training on the selected
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features is considerably faster than training on the entire pool of ran-
dom features, and (ii) the resulting model is also much smaller. For
certain kernels, this feature selection approach—which is applied at
the level of the random features—can be regarded as a non-linear
method for feature selection at the level of the raw input features,
and we use this observation to motivate additional speed-ups.

We conduct an empirical evaluation of this proposed method on
two large-scale acoustic modeling datasets, and demonstrate large
improvements over the natural baseline of using random features
without feature selection. Given that deep neural networks (DNNs)
are the state-of-the-art method on these acoustic modeling problems,
we also compare our performance to that of DNNs. We show that
our method is generally able to match or beat the DNN in terms of
test cross-entropy, but lags behind on test token error rate (TER)3.
This leaves open an interesting question: how is it that these kernel
methods match the DNNs on cross-entropy, but not on TER?

2. RELATED WORK

Many recent works have been developed to speed-up the random fea-
tures approach to kernel method approximation. One line of work at-
tempts to reduce the time (and memory) needed to compute the ran-
dom feature expansions by imposing structure on the random pro-
jection matrix [6, 7]. It is also possible to use doubly-stochastic
methods to speed-up stochastic gradient training of models based on
the random features [8]. Neither of these speed-ups, however, pro-
vide a reduction in the number of random features required for good
performance, which is the primary aim in our present work.

A recent method that does share our primary aim is the Sparse
Random Features algorithm of Yen et. al. [9]. This algorithm is a co-
ordinate descent method for smooth convex optimization problems
in the (infinite) space of non-linear features: each step involves solv-
ing a batch `1-regularized convex optimization problem over ran-
domly chosen non-linear features (note that a natural extension of
this method to multi-class problems is to use mixed norms such as
`1/`2). Here, the `1-regularization may cause the learned solution
to only depend on a smaller number of such features. A drawback
of this approach is the computational burden of fully solving many
batch optimization problems, which is prohibitive for large data sets.
In our attempts to implement an online variant of this method with
SGD, using FOBOS [10] and `1/`2-regularization for the multi-
class setting, we observed that very strong regularization was re-
quired to obtain any intermediate sparsity, which in turn severely
hurt prediction performance. Effectively, the regularization was so
strong that it made the learning meaningless, and the selected fea-

3For our Cantonese dataset, ‘token error rate’ corresponds to ‘character
error rate’. For our Bengali dataset, ‘token error rate’ corresponds to ‘word
error rate’
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tures were basically random. Our approach for selecting random
features is less computationally intensive, and is more direct at en-
suring sparsity than `1-regularization.

Feature selection in general is well-studied in machine learning
and statistics [e.g., 11, 12]. A related problem in neural network
literature is network pruning [13, 14]. Our aim here is to identify a
method of feature selection that is effective and efficient with ran-
dom features for producing compact models.

One application-specific aim of this work is to evaluate ker-
nel methods in acoustic modeling for speech recognition, where the
scale of modern speech data sets has precluded the use of stan-
dard kernel methods. Some recent evaluations of random features
have been conducted on the TIMIT data set [15], which is rather
small compared to more recent speech data sets. Our evaluations
tackle much larger-scale and more challenging acoustic modeling
problems, where the state-of-the-art methods are deep neural net-
works [16, 17].

3. BACKGROUND

Our goal is to learn a multi-class prediction function f : X → Y
from a collection of n labeled examples S ∈ (X × Y)n, where
Y = {1, 2, . . . , C}, and x ∈ X ⊆ Rd.

3.1. Linear and non-linear models

In linear models, the prediction function f is represented using a
weight matrix W = [W1|W2| · · · |WC ] ∈ Rd×C , where the predic-
tion on input x is f(x) = arg maxc∈[C]〈Wc, x〉. In this work, we
consider simple non-linear models based on non-linear feature ex-
pansions z : Rd → RD , and learn a linear model on top of these
features. We learn the weight matrix W by minimizing the em-
pirical risk RS(W ) = 1

|S|
∑

(x,y)∈S `(W ; (x, y)). In our work,
we use the logistic loss function, `(W ; (x, y))= −〈Wy, z(x)〉 +

ln(
∑C

c=1 exp(〈Wc, z(x)〉))= − log(p(y|x;W )), and use stochas-
tic gradient descent (SGD) [e.g., 18, 19] to approximately minimize
the empirical RS .

3.2. Kernel methods and random features

Kernel methods are based on symmetric positive-definite kernel
functions K : X × X → R. The kernel value K(x, x′) can be
regarded as an inner product K(x, x′) = 〈φ(x), φ(x′)〉H between
φ(x) and φ(x′) for some feature expansion φ : Rd → H to a feature
space H, where H can be infinite-dimensional. Standard kernel
methods employ a trick to avoid ever computing φ(x) explicitly,
but this generally comes at the cost of computing all kernel values
K(x, x′) for every pair {x, x′} in the training data set S, which can
be prohibitive for large n = |S|.

The random features approximation seeks an explicit feature
map z : Rd → RD such that 〈z(x), z(x′)〉 ≈ K(x, x′). In this
work, we focus on shift-invariant kernels—i.e., kernels K that sat-
isfy K(x, x′) = K(x − x′, 0) for all x ∈ X . As demonstrated in
[4], Bochner’s theorem implies that for shift-invariant kernels, the
following explicit feature map satisfies the above kernel approxima-
tion property:

z(x)j =

√
2

D
cos
(
〈θ(j), x〉+ b(j)

)
for θ(j) drawn from the Fourier transform of the function δ 7→
K(δ, 0), and for b(j) drawn uniformly at random from [0, 2π].

Algorithm 1 Random feature selection
input Target number of random features D, data subset size R,

selection schedule 0 = s0 < s1 < · · · < sT = D.
1: initialize feature pool P := ∅.
2: for t = 1, 2, . . . , T do
3: GenerateD− st−1 new random features, and add them to P .
4: Learn weights W ∈ RP×C over the D features in P using a

single pass of SGD over R randomly selected training exam-
ples.

5: Select st features j ∈ P for which
∑C

c=1(Wj,c)
2 are largest;

discard the remaining D − st.
6: end for
7: return Final collection of D random features P .

3.3. Acoustic modeling

A basic acoustic model provides a conditional probability distribu-
tion p(y|x) over C possible acoustic states, conditioned on a short
acoustic frame x encoded in some raw feature representation. The
acoustic states correspond to context-dependent phoneme states, and
in modern speech recognition systems, the number of such states is
of the order 103 to 104. The acoustic model is used within proba-
bilistic systems for decoding speech signals into word sequences.

4. RANDOM FEATURE SELECTION

4.1. Feature selection method

Our proposed random feature selection method, shown in Algo-
rithm 1, is based on a general iterative framework. In each iteration,
random features are added to the pool of features, and a subset
of them are selected, while the rest are discarded. The selection
criterion is based on a feature’s SGD-learned weights.

While this feature selection method is rather simplistic, it has
the following advantages. The overall computational cost is rather
mild, as it requires just T passes through subsets of the data of size
R (equivalent to ≈ TR/n full SGD epochs). In fact, in our experi-
ments, we find it sufficient to use R = O(D). Note that this is less
computationally demanding than fully solving an `1-regularized op-
timization problem, as in the Sparse Random Features method of [9].
Moreover, the method is able to explore a large number of non-linear
features, while maintaining a compact model. If st = Dt/T , then
the learning algorithm is exposed to roughly DT/2 random fea-
tures throughout the feature selection process. We show in Section 5
that this empirically increases the predictive quality of selected non-
linear features.

4.2. The Laplacian kernel and sparse non-linear combinations

Recall that for the Laplacian kernel, the sampling distribution
used in random Fourier features is the multivariate Cauchy den-
sity p(θ) ∝

∏d
i=1(1 + θ2i )−1 (we set σ = 1 for simplicity). If

θ = (θ1, θ2, . . . , θd) ∼ p, then each θi has a two-sided fat tail
distribution, and hence a draw θ will typically contain some entries
much larger than the rest.

This property of the sampling distribution implies that many of
the random features generated in this way will each effectively con-
centrate on a few of the raw input features. We can thus regard each
such random feature as being a non-linear combination of a small
number of the original input features. Thus, the feature selection

2425



method for selecting random features is effectively picking out use-
ful non-linear interactions between small sets of raw input features.

We can also directly construct sparse non-linear combinations of
the input features. Instead of relying on the properties of the Cauchy
distribution, we can actually choose a small number k of coordinates
in F ⊆ {1, 2, . . . , d}, say, uniformly at random, and then choose the
random vector θ so that it is always zero in positions outside of F ;
the same non-linearity (e.g., x 7→ cos(〈θ, x〉 + b)) can be applied
once the sparse random vector is chosen. Compared to the random
Fourier feature approximation to the Laplacian kernel, the vectors θ
chosen this way are truly sparse, which can make the random feature
expansion more computationally efficient to apply.

Note that random Fourier features with such sparse sampling
distributions in fact correspond to shift-invariant kernels that are
rather different from the Laplacian kernel. For instance, if the
non-zero entries of θ are chosen as i.i.d. N(0, σ−2), then the corre-
sponding shift-invariant kernel is

K(x, x′) =
∑

F⊆{1,2,...,d}:|F |=k

∏
i∈F

exp

(
− (xi − x′i)2

2σ2

)
. (1)

The kernel in Eq. (1) puts equal emphasis on all raw feature subsets
F of size k. However, the feature selection may effectively bias
the distribution of the feature subsets to concentrate on some small
family F of raw feature subsets.

5. EXPERIMENTS

In this section, we describe an empirical study of our proposed ran-
dom feature selection method in the setting of acoustic modeling.
Our aim is to quantify the effect of random feature selection relative
to the baseline use of random features without feature selection. We
hypothesize that for a fixed number of random features, random fea-
ture selection will yield a boost in the predictive performance of the
learned model compared to the baseline method.

We instantiate our method with three different shift-invariant
kernels: the Gaussian kernel, the Laplacian kernel, and the “k-sparse
Gaussian” kernel from Eq. (1) with k = 5. In each case, we use
the random Fourier features method of [4] to generate the random
features, and train a linear model on top of these random features
using SGD with logistic loss, as described in Section 3.1. Our im-
plementation of SGD uses a learning rate decay scheme as described
in [20–22], and mini-batches of size 250 across all our experiments.

We experiment with two different annotated speech recognition
data sets, the IARPA Babel Program Cantonese and Bengali limited
language packs4. Each data set is comprised of about 20 hours of
speech for training, and about another 20 hours for testing. The
data sets are preprocessed using a standard pipeline5. Ultimately,
this yields training and test sets of labeled examples (x, y), where
x ∈ R360 and y ∈ {1, 2, . . . , 1000} is a label corresponding to a
context-dependent phoneme state. We set aside some of the training
examples as a hold-out set for parameter tuning. For Cantonese,
we have ntr = 7,675,795 (training), nho = 1,047,593 (hold-out),
and nte = 7,052,334 (test); and for Bengali, ntr = 7,483,896,
nho = 882,588, and nte = 7,197,328.

4The specific versions of the Cantonese and Bengali data sets are, respec-
tively, IARPA-babel101-v0.4c and IARPA-babel103b-v0.4b.

5Raw audio is aligned with phoneme state labels and 360 acoustic fea-
tures are extracted for each frame [23], using a fixed frame shift of 10 ms and
a frame length of 25 ms (overlapping frames). The features for each frame
correspond to the concatenation of nine 40-dimensional feature vectors: one
for the frame itself, and one for each of eight surrounding frames.

We vary the number of random features D ∈ {5×103, 104,
2.5×104, 5×104, 105} that are ultimately used in the final acous-
tic models. For each iteration of random feature selection, we draw
a random subsample of the training data of size n′ = 106 (except
when D = 105, in which case we use n′ = 2×106, to ensure a
safe n to D ratio), but ultimately we use all training examples once
the random features are selected. Thus, each iteration of feature se-
lection has equivalent computational cost to a n′/ntr fraction of an
SGD epoch (roughly 1/7 or 2/7 for D < 105 and D = 105 respec-
tively, on these speech data sets). We use T = 50 iterations of fea-
ture selection, and in iteration t, we select st = t ·(D/T ) = 0.02Dt
random features. Thus, the total computational cost we incur for fea-
ture selection is equivalent to approximately seven (or 14) epochs of
training. Kernel bandwidths and the initial SGD learning rate are
tuned on the hold-out set.

Due to space considerations, we will only include figures for
the Cantonese dataset in this paper; qualitatively, the Cantonese and
Bengali results are very similar.

Figure 1 plots the perplexity (i.e., exponential of average logistic
loss), as well as the token error rate (TER), of each learned model,
computed on the test set, as a function of the number of random
features D.

Some observations regarding the perplexity results: First, as ex-
pected, there is a general trend of increasing performance with more
random features. Second, in all cases, random feature selection de-
livers a substantial improvement in perplexity compared to the base-
line. For instance, on the Cantonese data set with the Laplacian ker-
nel approximation, the model with 104 random features obtained us-
ing random feature selection equals the performance of the baseline
model with 5×104 random features. Third, in terms of perplexity,
the k-sparse Gaussian (i.e., “Gaussian-k”) and Laplacian kernel ap-
proximations outperform the Gaussian kernel approximations. The
best results are delivered by applying random feature selection to the
Laplacian kernel approximation.

Now, some observations regarding the TER results: First, it
is important to note that these results are “noisier” than the per-
plexity results, suggesting there is a non-trivial relationship between
perplexity and TER. Second, performing feature selection typically
helps, most notably for the Laplacian kernel, giving a full 1% im-
provement in many cases. However, the gains are much weaker for
Gaussian and Gaussian-k kernels, And there is even a case where
feature selection hurts TER performance.

To assess these results on an absolute scale, we trained acoustic
models using deep neural networks (DNNs) on both the Cantonese
and Bengali data sets, following the approach detailed in [22]. For
Cantonese, the DNN with best hold-out perplexity has four hidden
layers, with 2000 units per hidden layer; for Bengali, the best DNN
has four hidden layers with 3000 units per hidden layer. We use the
tanh activation function. We compare these to the best kernel model
on the hold-out set, which uses the Laplacian kernel with random
feature selection and D = 100,000. The test results are in table 1:

The kernel model has better perplexity than the best DNN on
the Cantonese data set, but it is the reverse on Bengali. It turns out
many of the errors of the kernel model are due to confusions be-
tween multiple “silence” states. We therefore also compute a “col-
lapsed perplexity” score, where all “silence” states are treated as the
same state. We find that on this measure, the kernel model outper-
forms the best DNN on both data sets. Interestingly, even though the
DNN and kernel models have very similar test perplexity, the DNN
outperforms the kernel model in Token Error Rate (TER). An im-
portant area of future work is better understanding why this occurs.
Note that this result once again highlights the complicated relation-
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Fig. 1. Test performance for acoustic modeling experiments on Can-
tonese dataset, in terms of perplexity as well as TER. The appended
“+FS” indicates use of random feature selection.

Dataset Method Perplexity Collapsed TER

Cant. DNN 6.127 4.316 67.3%
Lap+FS 5.997 4.176 68.6%

Beng. DNN 3.616 3.256 71.3%
Lap+FS 3.678 3.233 72.7%

Table 1. Test results: best kernel model vs. best DNN model.

ship between perplexity and TER, which we observed in the analysis
of figure 1: One important caveat here is that our best kernel model
(D = 100,000) has 100 million trainable parameters, which is more
than these competing DNNs: ≈ 14 million and≈ 31 million param-
eters, for the 2000-wide and 3000-wide networks, respectively.

5.1. Effects of random feature selection

We now explore whether the proposed feature selection criteria is
robust; in our method, there is no guarantee that a feature selected
in one iteration will be selected in the next. In Figure 2, we plot the
fraction of the st features selected in iteration t that actually remain
in the model after all T iterations. We only show the results for
Cantonese for D = 50,000, as the plots of other values of D are
qualitatively similar. In nearly all iterations and for all kernels, over
half of the selected features survive to the final model. For instance,
over 90% of the Laplacian kernel features selected at iteration 10
survive the remaining 40 rounds of selection. For comparison, we
also plot the expected fraction of the st features selected in iteration
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Fig. 2. Fraction of the st features selected in iteration t that are in
the final model (survival rate) for Cantonese dataset.
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Fig. 3. The relative weight of each input feature in the random matrix
Θ, for Cantonese dataset, D = 50,000.

t that would survive until the end if the selected features in each
iteration were chosen uniformly at random from the pool. Since we
use st = Dt/T , the expected fraction in iteration t is T !/(t!·TT−t),
which is exponentially small in T until t = Ω(T/ log(T )).

Finally, we consider how the random feature selection can be re-
garded as selecting non-linear combinations of input features. Con-
sider the final matrix of random vectors Θ := [θ(1)|θ(1)| · · · |θ(D)] ∈
Rd×D after random feature selection. A coarse measure of how
much influence an input feature i ∈ {1, 2, . . . , d} has in the final
feature map is the relative “weight” of the i-th row of Θ.

In Figure 3, we plot
∑D

j=1 |Θi,j |/Z for each input feature i ∈
{1, 2, . . . , d}. Here, Z =

∑
i,j |Θi,j | is a normalization term. There

is a strong periodic effect as a function of the input feature num-
ber. The reason for this stems from the way the acoustic features
are generated. Recall that the features are the concatenation of nine
40-dimensional acoustic feature vectors for nine audio frames. An
examination of the feature pipeline from [23] reveals that these 40
features are ordered by a measure of discriminative quality (via lin-
ear discriminant analysis). Thus, it is expected that the features with
low (i− 1) mod 40 value may be more useful than the others; in-
deed, this is evident in the plot. Note that this effect exists, but is ex-
tremely weak, with the Gaussian kernel. We believe this is because
Gaussian random vectors in Rd are likely to have all their entries be
bounded in magnitude by O(

√
log(d)).

6. CONCLUSION

The random feature selection method proposed in this work delivers
consistent improvements in perplexity over the baseline use of ran-
dom features for kernel approximation, matching or beating DNN
performance on this metric. Nonetheless, DNNs outperform the ker-
nel models we have trained in terms of TER, suggesting that the
strong performance of DNNs cannot be entirely explained by their
ability to minimize test perplexity effectively. Further analysis of
this phenomenon will be the topic of future work.
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