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ABSTRACT

In this paper, we present an approach for learning in the semi-
supervised setting in the presence of novel class instances. In this
setting, data consists of a labeled portion and an unlabeled portion
that contains novel class instances along with unlabeled known class
instances. Novel class instances are instances from concepts that
do not have labeled training examples. This setting is appropriate
for the case in which data is abundant and labeling the entire data
is prohibitively expensive. We provide a model and an inference
framework that allow for a direct control over the portion of novel
class instances in the unlabeled data. Experiments on synthetic data
demonstrate the usefulness of the proposed approach. Comparison
to state-of-the-art approaches for learning in the presence of novel
class instances using unlabeled data illustrates the advantage in
using the proposed method in term of accuracy.

Index Terms— Novelty detection, semi-supervised learning,
sparsity learning, graphical model, dynamic programming

1. INTRODUCTION

In natural datasets, the number of classes in the data often increases
with data size. Designing a learning algorithm which addresses the
presence of novel classes in the data is essential. For example, in
labeling bird songs, efforts are focused on a few species while the
data may contain noise artifacts such as rain drops, moving cars, or
other bird species. Since such artifacts are not labeled by the experts,
they can be viewed as novel class instances. Moreover, due to the
cost of labeling, unlabeled bird vocalizations are mixed among the
novel class instances.

To the best of our knowledge, this setting is studied in several
papers. A maximum margin approach for learning where training
data contains both labeled instances from known classes and unla-
beled instances from both known and unknown classes is proposed
in [1]. The authors propose to tighten the boundary of known classes
leaving the remaining space to be labeled as novel, as in Fig. 1. The-
oretical analysis for learning in the presence of novel class instances
with unlabeled data is considered in [2]. Other papers address this
problem under the name of outlier detection [3], novel class [4] or
unknown class detection [5] in the semi-supervised setting.

This work is partially supported by the National Science Foundation
grants CCF-1254218, DBI-1356792, and IIS-1055113.

number of known 

class instances

in unlabled data

N=15

Fig. 1: Example of using unlabeled data for learning in the pres-
ence of novel class instances. Labeled instances from two classes are
colored with red and blue, respectively. Unlabeled instances are in
white. Unlabeled novel class instances are marked with a square and
unlabeled known class instances are marked with a circle. Unlabeled
data can help to tighten the boundary of known classes (dashed) leav-
ing the remaining space to be labeled as novel.

In this paper, we propose a discriminative probabilistic frame-
work that addresses the challenge of learning in the presence of novel
class instances in a semi-supervised setting. We present a novel ap-
proach that is based on controlling the sparseness of the known class
instances in the mixed unlabeled data pool. The challenging infer-
ence problem associated with the dependence structure created by
the sparsity control is resolved using an efficient dynamic program-
ming approach. Experiments on toy data and evaluations with state-
of-the-art approaches on real world data illustrate the effectiveness
of the proposed method.

2. PROBLEM FORMULATION

This paper considers the following setting for learning under novel
class instances. We are given a set of labeled instances, represented
by {xi, yi}Li=1, where xi ∈ X = Rd is the feature vector and
yi ∈ {1, 2, . . . , C} is the label of the ith labeled instance, with the
total number ofC known classes. The input also contains a set of un-
labeled instances, represented by {xL+i}Ui=1. Among U unlabeled
instances, assume that there are N instances from known classes,
N ≤ U . Denote the novel class as 0. The task is to learn a classi-
fier that maps an instance in X to a label in Y = {0, 1, 2, . . . , C}.
Sparseness is often characterized by the number of nonzero entries
in a given vector. In this paper, sparseness is related to the number
of known class (nonzero class) instances contained in the unlabeled
data.
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Fig. 2: Graphical model for learning in the presence of novel class
instances using unlabeled data. Shaded nodes denote observed vari-
ables. N is used to control the number of known class instances in
the unlabeled data.

3. PROPOSED MODEL

The proposed graphical model is shown in Fig. 2. Assume that in-
stance labels are independent given instance features. The relation
between instance feature xi and instance label yi, 1 ≤ i ≤ L + U ,
is modeled by a multinomial logistic regression function as follows

p(yi|xi,w) =

∏C
c=0 e

I[yi=c]wT
c xi∑C

c=0 e
wT
c xi

, (1)

where w = [w0,w1, . . . ,wC ], such that wk ∈ Rd for 0 ≤ k ≤ C,
is the parameter to learn, and I[·] is the indicator function. Addition-
ally, the relation between the number of known class instances N
and the hidden labels yL+1, yL+2, . . . , yL+U is

p(N |yL+1, yL+2, . . . , yL+U ) = I[N =

U∑
i=1

I[yL+i 6= 0]]. (2)

Even though N is unknown, we treat it as observed as shown in
Fig. 2, which can be tuned as a hyperparameter.

4. MAXIMUM LIKELIHOOD FOR INFERENCE

Maximum likelihood is used to estimate the model parameters. For
a simple representation, we denote the observed labeled data by
{XL, yL} , {xi, yi}Li=1 and the observed unlabeled data by XU ,
{xL+i}Ui=1. Using the conditional rule and the independence as-
sumption between the labeled and unlabeled portions of the data, the
probability of the observations given the parameters is

p(XL, yL,XU , N |w) = p(yL|XL,w)p(N |XU ,w)p(XL,XU |w).
(3)

Assuming that XL and XU are independent of w, as in Fig. 2,
p(XL,XU |w) is a constant w.r.t. w. Consequently, maximizing (3)
is equivalent to maximizing the product of p(yL|XL,w)p(N |XU ,w)
only. Taking the logarithm of (3), we obtain the log-likelihood

L(w) =

L∑
i=1

log p(yi|xi,w) + log p(N |XU ,w) + ζ, (4)

where ζ = log p(XL,XU |w) is a constant w.r.t. w. Note that (4)
utilizes the independence assumption among labeled instances. We

compute p(N |XU ,w) by marginalizing over the hidden labels

p(N |XU ,w)

=

C∑
yL+1=0

C∑
yL+2=0

· · ·
C∑

yL+U=0

p(N, yL+1, . . . , yL+U |XU ,w)

=

C∑
yL+1=0

C∑
yL+2=0

· · ·
C∑

yL+U=0

(
I[N =

U∑
i=1

I[yL+i 6= 0]]×

U∏
i=1

p(yL+i|xL+i,w)

)
, (5)

where the last equation follows the independence assumption among
unlabeled instances and the relation between N and hidden labels of
unlabeled instances in (2). Replacing (5) into (4) yields the explicit
expression for the log-likelihood. To the best of our knowledge, no
efficient closed-form solution for the direct maximization of the log-
likelihood L(w) is available. Thus, we apply the Expectation Maxi-
mization [6] framework to maximize L(w).

4.1. Expectation maximization

Denote yU as a vector of hidden variables {yL+i}Ui=1 and the ob-
served data D , {XL, yL,XU , N}. The surrogate function g(w,w′)
for L(w) is computed as follows

g(w,w′) = EyU |D,w′ log p(yL, yU , N |XL,XU ,w)

= EyU |D,w′ [log p(yL|XL,w) + log p(yU |XU ,w)]

+ EyU |D,w′ log p(N |yU ,XU ,w). (6)

In (6), EyU |D,w′ log p(N |yU ,XU ,w) = EyU |D,w′ log p(N |yU ) = α
is a constant w.r.t. w. Using the independence assumption among
labeled and unlabeled instances, p(yL|XL,w) =

∏L
i=1 p(yi|xi,w)

and p(yU |XU ,w) =
∏U

i=1 p(yL+i|xL+i,w). Hence, (6) becomes

g(w,w′) =
L∑

i=1

log p(yi|xi,w)

+ EyU |D,w′

( U∑
i=1

C∑
c=0

I[yL+i = c] log p(yL+i = c|xL+i,w)

)
+ α

=

L∑
i=1

log p(yi|xi,w) (7)

+

U∑
i=1

C∑
c=0

p(yL+i = c|N,XU ,w′) log p(yL+i = c|xL+i,w) + α.

Replacing p(yi|xi,w) from (1) into (7), yields

g(w,w′) =
L∑

i=1

[

C∑
c=0

I[yi = c]wT
c xi − log(

C∑
c=0

ewT
c xi)]+ (8)

U∑
i=1

C∑
c=0

p(yL+i = c|N,XU ,w′)[wT
c xL+i − log(

C∑
l=0

ewT
l xL+i)] + α.

We use generalized EM [7] to increase L(w) by increasing g(w,w′)
rather than maximizing g(w,w′) at every iteration. As a result, we
have the following EM update equations
• E-step: Compute the class membership probabilities for in-

stances of the unlabeled data p(yL+i = c|N,XU ,w(k)), 1 ≤
i ≤ U and 0 ≤ c ≤ C.

• M-step: Find w(k+1) s.t. g(w(k+1),w(k)) ≥ g(w(k),w(k)).
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4.2. E-step

The class membership probability p(yL+i = c|N,XU ,w) is com-
puted from p(yL+i = c,N |XU ,w) using the conditional rule as

p(yL+i = c|N,XU ,w) =
p(yL+i = c,N |XU ,w)∑C
l=0 p(yL+i = l, N |XU ,w)

. (9)

Due to the dependence between the yL+i’s givenN , the computation
of p(yL+i = c,N |XU ,w) is nontrivial. To simplify this derivation,
we introduce an equivalent graphical model (see Fig. 3(a)). Denote
ni =

∑i
k=1 I[yL+k 6= 0] as the number of known class instances

from the 1st to the ith instances in the unlabeled data. Additionally,
denote n\iU as the number of known class instances in the unlabeled
data excluding the (L + i)th instance. Based on this notation, we
compute p(yL+i = c, nU = N |XU ,w), 0 ≤ c ≤ C, 1 ≤ i ≤ U as
follows

• Step 1. Compute p(nU |XU ,w) as follows
1© Initialize p(n1|XU ,w){
p(n1 = 0|XU ,w) = p(yL+1 = 0|xL+1,w),
p(n1 = 1|XU ,w) =

∑
c 6=0 p(yL+1 = c|xL+1,w).

2© Compute p(ni+1|XU ,w) from p(ni|XU ,w) as follows

p(ni+1 = k|XU ,w) = (10)
p(ni = k|XU ,w)p(yL+i+1 = 0|xL+i+1,w)+

I[k ≥ 1]× p(ni = k − 1|XU ,w)
∑
c 6=0

p(yL+i+1 = c|xL+i+1,w),

for 0 ≤ k ≤ N . The intuition behinds (10) is that if there are k
known class instances in the first (i + 1) instances of the unlabeled
data, then two mutually exclusive events may exist. One event is
when there are k known class instances in the first i instances mean-
while the (i + 1)th instance is novel. Another event is when there
are (k − 1) known class instances in the first i instances and the
(i+ 1)th instance is also a known class instance.

• Step 2. From p(nU |XU ,w), compute p(n\iU |XU ,w) using forward
substitution method [8] as follows
1© Compute p(n\iU = 0|XU ,w)

p(n
\i
U = 0|XU ,w) =

p(nU = 0|XU ,w)

p(yL+i = 0|xL+i,w)
. (11)

2© Compute p(n\iU = k|XU ,w), 1 ≤ k ≤ N as follows

p(n
\i
U = k|XU ,w) =

p(nU = k|XU ,w)

p(yL+i = 0|xL+i,w)

−
p(n
\i
U = k − 1|XU ,w)

∑
c 6=0 p(yL+i = c|xL+i,w)

p(yL+i = 0|xL+i,w)
. (12)

• Step 3. From p(n
\i
U |XU ,w), compute p(yL+i = c, nU =

N |XU ,w) as follows
p(yL+i = c, nU = N |XU ,w) ={
p(yL+i = c|xL+i,w)p(n

\i
U = N − 1|XU ,w), if c 6= 0,

p(yL+i = c|xL+i,w)p(n
\i
U = N |XU ,w). if c = 0.

The graphical model for the E-step is shown in Fig. 3. The com-
putational complexity of the E-step is O(NU + CdU). Note that
the idea of converting a V structure to a chain structure has been
investigated for the OR relation [9] [10]. This paper introduces the
dynamic programming technique for the addition relation instead.
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Fig. 3: Graphical models for the E-step. Bolded nodes denote nodes
that are currently considered. Shaded nodes denote observed vari-
ables. (a) The graphical model with new variables. (b) Step 1:
compute p(nU |XU ,w) from p(n1|XU ,w) using dynamic program-
ming. (c) Step 2: compute p(n\iU |XU ,w) from p(nU |XU ,w) and
p(yL+i|xL+i,w). (d) Step 3: compute p(yL+i = c, nU =

N |XU ,w) from p(n
\i
U |XU ,w) and p(yL+i|xL+i,w).

4.3. M-step

We use gradient ascent [11] to increase the surrogate function in (8).
Specifically, the parameter w is updated as follows

w(k+1)
c = w(k)

c + η × ∂g(w,w(k))

∂wc

∣∣∣∣
w=w(k)

, 0 ≤ c ≤ C, (13)

where the formula for the gradient ∂g(w,w(k))
∂wc

is given by

∂g(w,w(k))

∂wc
=

L∑
i=1

[I[yi = c]− p(yi = c|xi,w)]xi+ (14)

U∑
i=1

[p(yL+i = c|N, xL+i,w(k))− p(yL+i = c|xL+i,w)]xL+i,

and η in (13) is computed using backtracking line search [11].

4.4. Prediction

The predicted label ŷt of a test instance xt is computed as follows

ŷt = arg max
0≤c≤C

p(yt = c|xt,w), (15)

where p(yt = c|xt,w) is given in (1).

5. EXPERIMENTS

In this section, we evaluate the proposed approach on both synthetic
and real world datasets.

5.1. Classification in the presence of novel class instances

Setting. We use a 2D toy example to illustrate the mechanism of the
proposed approach. In the example, there are six regions represent-
ing five classes, as shown in Fig. 4(a). Specifically, red, green, pink,
and cyan regions represent classes 1, 2, 3, and 4, respectively, and the
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two blue regions represent class 0 (novel class). From that class dis-
tribution, we generate a dataset, as shown in Fig. 4(b). There are 100
labeled instances from the known classes (represented by red, green,
pink, and cyan dots) and 1000 unlabeled instances (represented by
small black dots). The instances are uniformly generated, therefore,
the number of known class instances in the unlabeled data is around
(1000 × 4)/6 ≈ 666. The proposed approach is repeated for N in
the set {950, 800, 650, 500}. Note that since the data is not linearly
separable, we use the kernel technique with random Fourier features
that transforms x to φ(x) as in [12].
Results and analysis. The learned classifiers when N is 950, 800,
650, and 500 are shown in Fig. 4(c-f), respectively. When N de-
creases, (indicating that the number of novel class instances in the
unlabeled data increases), the proposed method leaves more space
for the novel class. For instance, when N = 950 > 666, there is
no space for novel class. However, when N = 500 < 666, there is
a larger space for novel class. When N is correctly tuned (around
666), partitions which correctly cover the original regions are found.
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Fig. 4: Results on a toy dataset. (a) Class distribution, novel class
instances are blue. (b) Labeled instances (red, pink, green, and
cyan dots) and unlabeled instances (small black dots). (c-f) Learned
boundary when N = 950, N = 800, N = 650, and N = 500,
respectively.

5.2. Experiments on real world datasets

Setting. We compare the proposed logistic regression in the semi-
supervised setting (LRSSS) with a state-of-the-art method for learn-
ing in the presence of novel class instances by using unlabeled data
LACU [1]. LACU uses an SVM solver and several regularization
parameters to approximately control the boundary between known
classes and novel class. The parameter setting for LACU follows [1].
Specifically, η is searched from 1.1 to 1.5 with the step size of 0.05,
λ is searched from 0.05 to 0.45 with the step size of 0.05, C is
searched in the set {0.01, 0.1, 1, 10, 100}, and the ramp loss s is
searched in the set {−0.7,−0.5,−0.3,−0.1}. Note that the pro-
posed approach requires tuning of a single parameter, the number of
known class instances in the unlabeled data N . Specifically, N is an
integer searched from 0.01 to 0.7 (with the step size of 0.01) × the
number of unlabeled instances.
Generation of partially labeled datasets. We perform our evalu-
ation on HJA bird song, MSCV2 [13], 50Salad [14], and MNIST
handritten datasets [15] and select some of the classes to represent
the novel class. For MNIST, we apply PCA to reduce the feature
dimension from 784 to 50. For each dataset, using the classes order
of the original datasets, we select instances from 4 classes: from the
1st to 4th classes where the 4th class is selected as novel class and

the 1st to 3rd classes are known classes. Moreover, 100 labeled in-
stances and 400 unlabeled instances are randomly selected 10 times
leading to 10 train-test evaluations. The small number of labeled and
unlabeled instances is due to the memory limitation of LACU. The
mean and standard deviation of prediction on unlabeled data over the
10 evaluations are reported.
TuningN for LRSSS. To selectN , we train LRSSS on different val-
ues ofN to obtain classifier hN (·) from X to Y = {0, 1, 2, . . . , C}
for each N . We then use labeled data as a validation set. The accu-
racy of each hN on the validation set is accN . Consider the example
in Fig. 4, with a largeN , accN is very high (→ 1), where the bound-
ary between known classes are correctly predicted. Even though the
space for the novel class is designated for known classes, the vali-
dation data contains only known class instances, hence, there is no
error. WhenN becomes smaller than the true number of known class
instances, hN classifies some known class instances as novel, as in
Fig. 4(f), therefore reducing accN . The selected value for N is at
the estimated knee of the accN curve.
Results and analysis. The accuracy results for the methods un-
der consideration on the considered datasets are shown in Table
1. LRSSS-opt is LRSSS with the value of N giving the highest
accuracy. LRSSS-tune is LRSSS with the value of N selected from
aforementioned method. LR-L is a logistic regression classifier
trained with labeled data only and unaware of novel class. LRSSS-
true is LRSSS given the correct number of N in the unlabeled
data. From Table 1, LRSSS-opt significantly outperforms LACU in
term of accuracy. It is due to the fact that LRSSS-opt uses an exact
method, without relaxation to control the boundary between known
classes and novel class. The accuracy results of LRSSS-tune are
comparable to those of LRSSS-opt except for MNIST dataset. The
reason is due to the small number of instances in the validation set
that cannot fully capture the true distribution of known classes. LR-L
achieves lower accuracy results compared to LRSSS-opt since LR-L
is unaware of the novel class. The accuracy results of LRSSS-true
are comparable to those of LRSSS-opt except on MNIST, where
the small amount of labeled instances may not guide the learner
perfectly even with the true value of N .

Dataset HJA bird MSCV2 50Salad MNIST
LRSSS-opt 74.4±1.7 77.8±2.2 72.8±2.2 82.0±3.1
LRSSS-tune 73.2±2.5 69.0±1.5 69.0±2.7 69.2±3.3
LACU 51.6±8.8 65.8±7.1 65.7±7.5 79.4±3.3
LR-L 54.1±2.1 73.2±1.7 42.1±1.9 67.7±2.4
LRSSS-true 74.3±1.3 78.0±2.1 70.1±2.5 78.5±3.3

Table 1: Accuracy results of the proposed approach and LACU. The
proposed method and indistinguishable values using 95% confidence
two-tailed paired t-tests with the highest values are bolded.

6. CONCLUSION

This paper proposed an approach for learning in the presence of
novel class instances in the semi-supervised setting. A discrimina-
tive probabilistic model and the corresponding inference are pro-
posed. The approach allows a direct control over the number of
known class instances in the unlabeled data. Experiments on syn-
thetic and real data illustrated the usefulness of the method. Com-
pared with state-of-the-art approach on the same problem setting,
the proposed method achieves higher accuracy in most cases. Future
direction includes how to reduce the computational complexity of
calculating the membership probability in the E-step as well as how
to more effectively tune the N parameter.
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