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ABSTRACT

Sparse representation-based classifiers have shown outstand-
ing accuracy and robustness in image classification tasks even
with the presence of intense noise and occlusion. However,
it has been discovered that the performance degrades signif-
icantly either when test image is not aligned with the dictio-
nary atoms or the dictionary atoms themselves are not aligned
with each other, in which cases the sparse linear represen-
tation assumption fails. In this paper, having both training
and test images misaligned, we introduce a novel sparse cod-
ing framework that is able to efficiently adapt the dictionary
atoms to the test image via large displacement optical flow.
In the proposed algorithm, every dictionary atom is automati-
cally aligned with the input image and the sparse code is then
recovered using the adapted dictionary atoms. A correspond-
ing supervised dictionary learning algorithm is also developed
for the proposed framework. Experimental results on digit
datasets recognition verify the efficacy and robustness of the
proposed algorithm.

1. INTRODUCTION

Sparse coding has been successfully applied to numerous
computer vision tasks, including face recognition [1], scene
categorization [2] and object detection [3]. Application of
sparse representation-based classifier (SRC) on face recog-
nition [1] demonstrates a startling robustness over noise and
occlusions, where the test subjects are still recognizable even
when they wear sunglasses or scarf. However, SRC has been
found to be highly sensitive to the misalignment of the image
dataset: a small amount of image distortion due to translation,
rotation, scaling and 3-dimensional pose variations can lead
to a significant degradation on the classification performance
[4].

One straightforward way to solve the misalignment prob-
lem is to register the test image with dictionary atoms before
sparse recovery. By assuming the dictionary atoms are regis-
tered, Wagner et al. [4] parameterize the misalignment of the
test image with an affine transformation. These parameters
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are optimized using generalized Gauss-Newton methods after
linearizing the affine transformation constraints. By minimiz-
ing the sparse registration error iteratively and sequentially
for each class, their framework is able to deal with a large
range of variations in translation, scaling, rotation and even
3D pose variations. Due to the adoption of holistic features,
sparse coding is more robust and less likely to overfit.

In the case of local feature-based sparse coding, max pool-
ing strategy [5] is often employed over the neighboring coef-
ficients to produce local translation-invariant property. Based
on spatial pyramid matching framework, Yang et. al. [2] pro-
posed a local sparse coding model with local SIFT features
followed by multi-scale max pooling. The results on several
large variance datasets achieved plausible performance that
can hardly be pursued by simply applying holistic sparse cod-
ing. To improve the discriminability of the sparse codes, their
dictionary was trained with supervised learning via back-
propagation [6]. Classification performance of local feature-
based sparse coding has also been evaluated on several large
datasets in [7], demonstrating a state-of-art performance that
is competitive with deep learning [8, 9]. Another interest-
ing approach is the convolutional sparse coding [10], where
the local features are reconstructed by convoluting the local
sparse codes using local dictionary. Visualization of its dic-
tionary shows that the dictionary atoms contain more complex
features, therefore having more discriminative power.

In this paper, we present a novel sparse coding framework
that is robust to image transformation. In the proposed model,
each dictionary atom is constructed in the form of a tensor and
is aligned with the test image using the large displacement
optical flow concept [11]. We show experimentally that the
proposed sparse coding framework outperforms most other
sparsity-based methods. Specifically, our paper has the fol-
lowing novelties and contributions: (i) The proposed algo-
rithm does not require the training dataset to be pre-aligned.
(ii) Adapting the dictionary to the input test image is highly
efficient: requiring only O(PT ) operations for adapting each
dictionary atom, where T is the number of pixels in a search-
ing window and P is the total number of subatoms to be
aligned. (iii) Supervised dictionary learning algorithm is de-
veloped for the proposed sparse coding framework.

The remainder of the paper is organized as follows: We first
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Fig. 1: Proposed sparse coding framework: Dictionary tensor atoms {Dn}Nn=1 and the test tensor image X are shown in the lower part of
the figure. Searching window of size T = 3× 3 within each tensor atom is colored with purple. Each group of neighboring T subatoms
Bnp is matched with the corresponding vector pixel xp of the test tensor image, resulting in an aligned subatom Bnpĉnp. After the
matching process, the sparse code for xp is recovered using all the aligned subatoms {Bnpĉnp}Nn=1. For illustration purposes, only five
dictionary tensor atoms are shown in the figure and the magnitude of the sparse codes are displayed with various intensities in red.

introduce the proposed sparse coding framework for dealing
with dataset misalignment in Section 2. Next, in Section 3,
we show how to train the dictionary in a supervised manner
by solving a bilevel optimization problem. Finally, in Section
4, experimental results demonstrate that the proposed frame-
work has a state-of-art performance, which is more promising
over most existing sparsity-based methods.

2. SPARSE CODING WITH IMAGE ALIGNMENT
VIA LARGE DISPLACEMENT OPTICAL FLOW

In this section, we first introduce how to construct the dictio-
nary atoms and input images in the form of tensors. We then
illustrate how to eliminate the misalignment by dynamically
adapt the tensor dictionary atoms to the input tensor image.

In the proposed sparse coding model, as shown in Fig.
1, both dictionary atom and input image are represented by
image tensors. Each pixel in the tensor image is a vec-
torized version of a local patch in the original image, re-
ferred to as a vector pixel. Denote the nth tensor atom as
Dn = [dn1, . . . ,dnP ] ∈ RM×P and a given test tensor im-
age as X = [x1, . . . ,xP ] ∈ RM×P , where dnp ∈ RM is the
pth subatom of the nth tensor atom and xp ∈ RM is the pth

vector pixel of the input image. M is the dimension of vector
pixel, n is the dictionary atom index and P is the total number
of subatoms in the tensor atom, which is the same number of
vector pixels in the test tensor image. The dictionary is de-
noted as D = [D1, . . . ,DN ] ∈ RM×NP . Given a dictionary
with N tensor atoms, a typical sparse recovery problem [1] is

formulated as:

α̂ = arg min
α

1

2

P∑
p=1

‖
N∑
n=1

αndnp − xp‖22 + λ‖α‖1, (1)

where α = [α1, . . . , αN ]> ∈ RN is the sparse coefficient
and λ > 0 is the regularization parameter. Problem (1) is a
standard form of `1-sparse recovery problem that can be effi-
ciently solved using alternating direction method of multipli-
ers (ADMM) [12].

When images in both the training and test datasets are mis-
aligned, sparse coefficients recovered by solving the problem
(1) become unreliable, thus resulting in poor classification
performance. To alleviate the misalignment problem, we pro-
pose to register each tensor atom with the input test image via
large displacement optical flow [11]. The notion of optical
flow field is used here to describe the displacements of vector
pixels within each tensor atom, and the sparse recovery is then
performed by using only the best matching subatoms selected
from the tensor atoms. The proposed framework is illustrated
in Fig. 1. Denote Bnp ∈ RM×T as the T subatoms within the
searching window centered at the location p of the nth tensor
atom. The recovery of the optical flow and sparse codes can
be formally described as follows:

(α̂, {ĉnp}) = arg min
α,{cnp}

1

2

P∑
p=1

‖
N∑
n=1

αnBnpcnp − xp‖22 + λ‖α‖1,

s.t. ‖cnp‖0 = 1, ‖cnp‖1 = 1, cnp ≥ 0,

∀n ∈ [N ], p ∈ [P ],
(2)
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where ‖cnp‖0 = 1 is the cardinality constraint and cnp ∈
RT is the sparse index vector that is used to characterize the
optical flow field. The constraint in (2) suggests that cnp is a
binary index vector and only one element is nonzero, which
means that it can only select one subatom within the searching
window.

The optimization problem in (2) is a mixed-integer prob-
lem and NP-hard [13]. Therefore, we propose a heuristic al-
gorithm to find an informative α and the sparse index vectors
{cnp}N,Pn,p=1 for all vector pixels. As shown in Fig. (1), the op-
tical flow field for each vector pixel is found by searching for
the best match between neighboring subatoms and the corre-
sponding input vector pixel. In practice, we found that search-
ing for the best match without involving the sparse code is the
key to render plausible performance in both classification ac-
curacy and computational efficiency. Formally, we propose to
find a local optimum of problem (2) by solving the following
optimization problem:

α̂ = arg min
α

1

2

P∑
p=1

‖
N∑
n=1

αnBnpĉnp − xp‖22 + λ‖α‖1

s.t. ĉnp = arg min
cnp

1

2
‖Bnpcnp − xp‖22,

‖cnp‖0 = 1, ‖cnp‖1 = 1, cnp ≥ 0,

∀n ∈ [N ], p ∈ [P ].

(3)

In our approach, the sparse coding part of (3) is solved by us-
ing the alternating direction method of multipliers (ADMM)
[12]. One important advantage of the above model is that it
is highly computational efficient because it only takes O(T )
operations to search for the best match for each vector pixel.

3. SUPERVISED DICTIONARY LEARNING

In order to improve the efficiency of sparse coding and dis-
criminablity of the dictionary, we employ the supervised dic-
tionary learning framework [6, 14, 15] to optimize the dictio-
nary and the classifier parameters simultaneously. Formulated
as a bilevel optimization problem, the dictionary is updated
using back propagation to minimize the classification error.
Formally, the supervised dictionary learning problem can be
formulated as follows:

min
W,D

Ey,X [`(y,Wα̂(X, {ĉnp(D)},D))] +
µ

2
‖W‖2F , (4)

where `(·) is some smooth and convex function that is used
to define the classification error and µ > 0 is the regulariza-
tion parameter used to alleviate the overfitting of the classifier.
Due to the triviality of updating classifier parameters, here we
only state the update for the dictionary:

D← Π(D− ρt · ∂`/∂D), (5)

where ρ > 0 is the learning rate, t is the iteration counter
and Π is the projection that regulate the Frobenius norm of

every tensor atom to be one. Similar to [6, 14, 15], (4) sug-
gests that the update of both the dictionary and the classifier
are driven by reducing classification error. The local optima
can be solved by using descent method [16] based on error
backpropagation. The sparse code α is an implicit function
of X, {cnp} and D. In addition, each optical flow field cnp is
an implicit function of D and xnp. Therefore, given an input
image X and an optimal sparse code α̂, apply the chain rule
of differentiation, the direction along which the upper-level
cost decreases can be formulated as:

∂`(y,Wα)

∂D
=

∂`

∂α

∂α

∂D
+

P∑
p=1

∂`

∂Cp

∂Cp

∂D
, (6)

where Cp =
⊕N

n=1 c̄np ∈ RNP×N and
⊕

denotes the direct
sum. Also, c̄np ∈ RNP is obtained by zero-padding with cnp,
where (N − 1)P + 1 to NP elements of c̄np are from those
of cnp. Due to the binary constraints on {cnp}, every element
of the gradient ∂Cp/∂D equals to zero. On the other hand,
the first part of the derivative can be solved by applying fixed
point differentiation [17]. Due to the page limitation of the
paper and the triviality for deriving the term ∂`/∂α, we only
show the final derivation of ∂α/∂D as follows:

∂αΛ

∂dmnp
= Θ−1

Λ,Λ

(
∂(DCp)

>
Λ

∂dmnp
xp −

∂ΘΛ,Λ

∂dmnp
αΛ

)
, (7)

where Λ is the index set of active atoms of the sparse code
α. (DCp)Λ is the matrix obtained by collecting the active
columns of DCp, Θ =

∑P
ρ=1 C>p D>DCp and ΘΛ,Λ is the

submatrix obtained by selecting the active columns and rows
of Θ. The matrix ΘΛ,Λ is always nonsingular since the total
number of measurement MP is always significantly larger
than the number of active atoms. Combining (6) with (7) for
each dictionary element, the gradient for updating the dictio-
nary can be achieved. For a large dataset, the dictionary and
the classifier parameters are updated in an online manner.

4. EXPERIMENTS

In this section, we evaluate the proposed algorithm on hand-
written digits datasets including the MNIST and USPS. The
sparse coding is performed with a single dictionary and linear
SVM is used for classification. For a fair comparison, we only
compare with the results that are produced with the same SRC
strategy. The dictionary size in our paper is set to be no larger
than those used in other methods. Similar to [6], parameters
in our experiments are chosen heuristically. The batch size
for updating the dictionary is 512. Initial learning rate ρ is set
to 0.001 and λ = 0.01.

4.1. Evaluation on the MNIST Database

MNIST [18] consists of a total number of 70, 000 images of
digits, of which 60, 000 are training set and the rest 10, 000

2406



(a) (b) (c) (d)

Fig. 2: The proposed method demonstrates plausible performance on MNIST digits recognition with a small number of training samples. It also
demonstrates robustness towards various image deformations. Classification accuracy of different experimental settings are shown in the above sub-figures:
(a) Error rate under various sizes of training samples. (b) Translation along x direction versus classification accuracy. (c) In-plane rotation only. (d) Scale
variation only. In (b)-(c), red and blue lines are the results of the proposed method and L1SC, respectively. Gray shadow area at the bottom of each figure is
the accuracy difference between the proposed method and L1SC.

are test set. Each digit is centered and normalized in a 28×28
field. The dictionary size N is set to be 150 for this database.

We first evaluate the performance of the proposed al-
gorithm under various number of training samples. We
follow the same experimental setting as in [19], exam-
ining the classification accuracy given the training size
{300, 1K, 2K, 5K, 10K, 20K, 40K, 60K}. The perfor-
mance is shown in Fig. 2 (a). The proposed method sig-
nificantly outperforms the `1 sparse coding-based algorithm
(L1SC) [15].

We then demonstrate the robustness of the proposed
method towards various image deformations. Following a
similar setting as in [4], we perform the translation along x
direction, rotation and scaling separately only on the test sam-
ples. We report the classification accuracy with respect to
various levels of deformation and compare the performance
with L1SC. The experimental results are shown in Fig. 2(b)-
(d). Performance of our method and L1SC are illustrated in
red and blue lines, respectively. The shadow area at the bot-
tom of each figure is the accuracy difference between the two
methods. We can see for all three deformations, the proposed
method consistently outperforms L1SC. In addition, the hump
shape of the shadow area indicates that the proposed method
is robust to numerous image deformations.

Finally, the error rate for the MNIST is shown in Table
1. Our method reaches the lowest error rate of 1.12%. On
MNIST, differences of more than 0.1% are statistically sig-
nificant [20]. Comparing with the second best algorithm, the
proposed method reduces the error rate by 0.12%, exhibiting
better generality and dictionary compactness.

4.2. Evaluation on the USPS Database

The USPS dataset has 7, 291 training and 2, 007 test images,
where each of them is of size 16 × 16. Being compared to
MNIST, the USPS dataset has a much larger variance and
a smaller training set, which challenges the dictionary gen-
erality. For a fair comparison, the dictionary size N is set

Method MNIST USPS
CBN 1.95 (3× 104) 4.14 (7291)
ESC [21] 5.16 (150) 6.03 (80)
Ramirez et al. [22] 1.26 (800) 3.98 (80)
Deep Belief Network [8] 1.25 (-) - (-)
MMDL [23] 1.24 (150) -(-)
Proposed 1.12 (150) 3.43 (80)
Improvements 9.7% 13.8%

Table 1: Error Rate (%) on MNIST and USPS datasets. The
dictionary size is shown in the parentheses. Improvements over the
second best algorithm is shown in the last line.

to be 80. Local patch size is 5 × 5 (M = 25). Searching
window size is 5 × 5 (T = 25). The performance of various
approaches on USPS database are depicted in Table 1. Our
algorithm achieves the lowest error rate 3.43% among other
supervised learning-based methods. The experimental result
validates the efficacy of our proposed algorithm on a dataset
with a larger variance.

5. CONCLUSION

In this paper, we present a novel sparse coding algorithm that
is able to dynamically select the dictionary subatoms to adapt
to the misaligned image dataset. In the proposed method, both
the dictionary atoms and the input test image are represented
by tensors, and each vector pixel in the tensor image is a vec-
torized local patch. Each tensor atom is aligned with the input
tensor image using large displacement optical flow, which is
highly computationally efficient. Using the fixed point differ-
entiation, a supervised dictionary learning algorithm is devel-
oped for the proposed sparse coding framework, which sig-
nificantly reduces the required dictionary size.
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