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ABSTRACT
We consider the problem of learning a structured and discrim-
inative dictionary based on sparse representation for classifi-
cation task. The structure comprises class-shared and class-
specific partitions which allows the separation of common
and class-specific information in the data for classification.
The resulting optimization problem was a max margin for-
mulation that exploits the hinge loss function property. Com-
parative evaluation of the proposed classifier against four re-
cent alternatives in a gender classification task indicates a 3-
percenatge point improvement.

Index Terms— Sparse Representation, Max Margin, Dic-
tionary learning

1. INTRODUCTION

Data representation, also referred to as feature extraction,
plays an important role in successful machine learning algo-
rithms. When it is properly formulated, such representation
captures the explanatory factors underlying data variations
and constitute an effective input to learning and prediction
algorithms [1]. Sparse representation is one of the many
representation-learning methods in which the data samples
are encoded by coefficient vectors (or sparse codes) hav-
ing limited number of non-zero elements. The sparse code
captures high-level variations underlying the data [2].

Given a dataset {Y|y1, y2, . . . , yj , . . . , yK}, the feature
vector or sparse code xj of yj (resulting from the mapping
D|xj 7→ yj (the dictionary)) is obtained by solving the con-
vex problem,

arg min
xj

‖yj − Dxj‖22 + λ‖xj‖1, (1)

where λ is the regularization parameter and the l1 norm pro-
motes sparsity. A number of methods have been developed to
obtain the dictionary D in Eq. (1) using samples from Y, and
good representation performance have been reported [3, 2].

Sparse representation with over-complete dictionaries
have been successfully used in classification tasks. When

dictionaries are constructed without supervision [3, 2], gen-
erally a supervised predictor is required to perform classi-
fication while those constructed with supervision [4, 5, 6]
do not necessarily require one. Sparse representation-based
classification (SRC) [6] is a well known example requir-
ing supervised-dictionary. In SRC, multiple dictionaries are
trained to distinctly represent different classes and the classifi-
cation output is solely based on the minumum reconstruction
error relative to the different dictionaries.

The training process could possibly result in dictionaries
with sufficient similarity that, given a test sample yj of class
ci ∈ C = {c1, . . . , cM}, dictionaries, Dck (ck 6= ci), trained
for other classes could also represent it. This phenomenon
has been discussed in [7] and described as collaborative repre-
sentation. The explantion was that two similar samples from
different classes could be well represented by a combination
of components in a dictionary except for differing reconstruc-
tion errors. Hence, there are collabortaively represented com-
ponents of the two samples. The collaboratively represented
components of yj , hereinafter referred to as the common or
class-shared components, are more representative than dis-
criminative. Classification improvement has been reported by
eliminating the class-shared components [8, 5].

Previous dictionary learning algorithms generally do not
explicitly define and constrain the separated common com-
ponents. Such separated common components could include
parts shared only by a few classes and are still discrimina-
tive in differentiating these classes from others [9]. Kong et
al. [8] and Zhou et al. [10] did not apply specific constraints
in constructing the common dictionary. In general, it is not
clear what should be represented by the common dictionary
or otherwise by class-specific dictionaries. To be specific, the
criteria for decomposing data samples into two separate com-
ponents that are represented by common and class-specific
dictionaries are not clear. The resultant algorithm largely de-
pends on the initialisation of the dictionary. In this paper,
we clarify this matter by defining the common components as
the parts of data which is shared by more classes. In an effort
similar to ours, Shen et al. [11] proposed a multi-level frame-
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work with a clear definition of dictionaries and classifiers at
each level. Conceptually, their common dictionary is at the
top level and captures the basic representation information of
all classes; sample classification is achieved by selecting the
appropriate branch of the hierachy. We quickly distinguish
our definition and purpose from that given in [11].

In this paper, we aim to separately represent the compo-
nents shared by multiple classes with a common dictionary
Dcom, and discriminative components with class-specific dic-
tionaries Dci (ci ∈ C = {c1, . . . , cM}); the dictionaries, Dci ,
are collectively represented by DC . The discrimination crite-
ria is based on representation error.

2. MODELLING THE CLASS-SHARED
COMPONENTS

The common components of the samples in a dataset can be
shared by a few or all the classes. If shared by a few group of
classes, they are also discriminative in the classification pro-
cess [9]. It is expected that the separated class-shared compo-
nents will be shared globally by as many classes as possible.
This may be achieved by enforcing common components to
be shared uniformly by most of the samples in the dataset.
Essentially, the common dictionary should be a low-rank ap-
proximation of the samples in the dataset. We proceed as fol-
lows.

Let the components of the data samples in Y repre-
sented by the common dictionary Dcom be denoted by
A = DcomXDcom ; XDcom are the correspondng sparse codes.
The dissimilarity among the elements of A can be expressed
as

θcom = ‖A− UUT A‖2F , (2)

where U ∈ Rm×p (p<m) is a matrix of the eigenvectors cor-
responding to the p largest eigenvalues of the covariance ma-
trix Y ·YT . By minimizing θcom, we force A to be a solution
of the homogeneous equation,

(I− UUT )A = 0, (3)

which makes rank(A) ≈ p and embeds it around the same
subspaces of rank p across different classes. Fig. 1 geometri-
cally illustrates an example with p = 2 where the images of
the unit sphere S under transformation by matrices Y and A
are two ellipses marked Y S and AS respectively. In this ex-
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Fig. 1. Toy example on θcom with p = 2 in 2D

ample, U = [u1, u2] consists of the two left singular vectors

of Y and Σ = [σ1, σ2], the corresponding singular values.
Further, [u1u

T
1 A, u2u

T
2 A] are two semi-axes ofAS along the

directions of U . Minimising θcom essentially encourages A to
be a matrix which only stretches S along U . The resultant A
represents a transformed copy of UT Σ which is the roughly
estimated common components using all samples across dif-
ferent classes.

With the foregoing discussion, the sparse coding problem
can be written in terms of the common dictionary, Dcom, and
the combined specific dictionaries DC (assumed known):

arg min
X,Dcom

‖Y− DCXDC − DcomXDcom‖2F

+ λ

K∑
i=1

‖xi‖1 + βθcom, (4)

where λ and β are control parameters.

3. REPRESENTATION OF CLASS-SPECIFIC
COMPONENTS

The class-specific components are defined based on the dis-
criminative criterion that the common dictionary and a class-
specific dictionary, D(com,ci) = [DcomDci ], can represent
samples from class ci better than other combinations of com-
mon and specific dictionaries. Using inner product as a mea-
sure of similarity among different vectors (assuming an inner
product space), we formulate the discriminative constraints
on specific dictionary ci and sample yj as the following error
measure,

rcij = yj · D(com,ci)x
D(com,ci)

j −

∣∣∣∣∣∣
M,com∑
ck 6=ci

yj · D(ck)x
D(ck)

j

∣∣∣∣∣∣
= yj · Dcix

Dci
j −

∣∣∣∣∣∣
M∑

ck 6=ci

yj · Dckx
Dck
j

∣∣∣∣∣∣ . (5)

The data sample yj is assumed to be sample-wisely nor-
malised to 1 using norm-2. Intuitively, in Eq. 5, the first
term is unity if all representation is due to the corresponding
class-specific dictionary, implying that the second term will
be nearly zero. For classification, we have{

if yj is in class ci, rcij > 0

else rcij < 0
. (6)

A geometric interpretation of rcij is shown in Fig. 2 where the

rcij

yj

Dcix
Dci
j

∑M
ck 6=ci

Dckx
Dck
j

Fig. 2. Visualization of error measure constraint for rcij > 0
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emboldened yellow segment rcij indicates whether Dci repre-
sents yj better than other class-specific dictionaries Dck (ck 6=
ci). The sign of rcij is an indicator of whether yj will be pre-
dicted as a sample from class ci.

Note that this constraint is applied to class-specific dic-
tionaries only, thus leaving the sparse coding problem in
learning and testing stage as in the unsupervised problem. A
careful inspection of the discriminative constraints on class-
specific dictionaries indicates that they are similar to those in
max-margin learning where the purpose is to separate data
with margins. We thus incorporate the constraints described
in Eq. (5) into the dictionary updating stage similarly to the
constraints in the least square SVM [12] with a linear kernel.
Assume the training set, Yci , for class ci has Nci samples.
Training the class-specific dictionary Dci for class ci can be
formulated as,

arg min
Dci

Nci∑
j=1

{‖yj − Dcix
Dci
j −

M,com∑
ck 6=ci

Dckx
Dck
j ‖22 + γe2

j}

s.t. yTj Dcix
Dci
j + b

Dci
j = 1− ej , ∀j ∈ [1, Nci ], (7)

where ej is a γ-controlled tolerance for violating the con-
straints and

b
Dci
j = −

∣∣∣∣∣∣
M∑

ck 6=ci

yTj Dckx
Dck
j

∣∣∣∣∣∣ .
In the objective function (7), the class-specific dictionary Dci

is forced to have the smallest representation error over Yci ,
compared to all the other class-specific dictionaries. The us-
age of ej essentially allows some samples yj to be represented
by the common dictionary, resulting in more compact and dis-
criminative dictionaries.

Improved convergence property is obtained by simultane-
ously updating x

Dci
j and Dci as in KSVD [3]. We denote by

w
Dci
j the estimated specific parts captured by Dci in yj and by

WDci = DciX
Dci
ci = [w

Dci
1 , . . . , w

Dci

Nci
] the estimated specific

components represented by Dci in Yci . Solving problem (7)
for an optimal Dci is the same as solving,

arg min
Dci

‖RDci −WDci ‖2F + γ

K∑
j=1

e2
j

s.t. yTj w
Dci
j + b

Dci
j = 1− ej , (8)

where RDci = Yci −
∑M,com

ck 6=ci
DckXDck

ci . Fortunately, the
problem (8) is convex with simple and computationally effi-
cient analytical solution. Each specific dictionary is updated
against the estimated WDci using KSVD and will be de-
scribed in details in Section 4.

In problem (8) and analogous to SVM theory, w
Dci
j is

the normal vector of the hyperplane G(w
Dci
j , b

Dci
j ). The con-

straint encourages the error indicator rcij to be (1 − ej) with
a minimum ej . Going through all class-specific dictionaries,
we essentially make Dci better at representing samples from
class ci and poorer at those from other classes.

Compared to the softmax loss function used by [4], our
formulation is 1) simple and convex and does not require the
local linear approximation of the softmax loss function, 2)
more discriminative because we force the reconstruction er-
ror of one class-specific dictionary to be smaller than those
of the remaining class-specific dictionaries by incorporating
common dictionary and thus reduce collaborative representa-
tion, 3) linear and provides exact linear penalty even when
samples are very close to the margin.

4. SOLVING THE DICTIONARY LEARNING
PROBLEM

In solving the proposed optimisation problem (4), the process
consists of alternately encoding training samples and updat-
ing atoms in the dictionaries. We fix D and update X, and vice
versa. The regularisation term θcom can be written as,

θcom = ‖(I− UUT )DHX‖2F , (9)

where I is an m×m identity matrix, H is a diagonal matrix
structured as

diag(H) =

 Ncom︷ ︸︸ ︷
1, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸

N1

, . . . ,

Nc︷ ︸︸ ︷
0, 0, . . . , 0

 , (10)

which makes A = DHX. The objective function (4) is then
rewritten as

arg min
X

∥∥∥∥(Y
0

)
−
(

D
(
√
β(I− UUT )DH

)
X
∥∥∥∥2

F

+ λ

K∑
i=1

‖xi‖1, (11)

where 0 is a zero matrix with the same size as Y. The objec-
tive function (11) is the standard sparse coding problem with
various efficient solvers such as the orthogonal matching pur-
suit (OMP) [13] and feature sign search algorithm [2]. We
adopted the feature sign search algorithm.

By fixing Dcom, we apply the method of Lagrange multi-
pliers to the objective function (8) and define the Lagrangian
as [12, 14],

L(Wci ,E,Λ) = ‖RDci −WDci ‖2F + γ‖E‖2F
−trace{Λ[Sci(YTWDci + BDci )− I + EDci ]}, (12)

where λj is the real-valued Lagrangian multiplier for each
training sample, Λ = diag([λ1, . . . , λK ]) , I ∈ RK×K is an
identity matrix and

Sci = diag([sci1 , . . . , s
ci
K ]), BDci = diag([b

Dci
1 , . . . , b

Dci
K ]),

EDci = diag([e
Dci
1 , . . . , e

Dci
K ]).

Applying the optimal conditions and properties of trace
derivatives, we can obtain a set of linear equations [12, 14],

∂L

∂W
Dci

= 0 −→ 2WDci + 0− YΛSci = 2RDci

∂L
∂E = 0 −→ 0 + 2γEDci − Λ = 0
∂L
∂Λ

= 0 −→ SciYTWDci + EDci − 0 = I− BDci

(13)
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The linear system (13) can be solved by firstly solving for
Λ and then, WDci and EDci can be solved. Note that since
Λ is diagonal in our formulation, formal matrix inversion is
obviated and WDci is easily obtained. The class-specific dic-
tionary Dci is then updated to minimise WDci using the stan-
dard KSVD algorithm [3]. This process is repeated for all M
class-specific dictionaries.

When given the sparse codes X for Y and all DC are fixed,
following the procedures from Eq. (9) to Eq. (11), we could
formulate the common dictionary update problem as,

arg min
Dcom

∥∥∥∥(YDcom

0

)
−
(

Dcom

(
√
β(I− UUT )Dcom

)
XDcom

∥∥∥∥2

F

(14)

The objective function (14) can be solved efficiently using
KSVD mechanism to update atoms sequentially.

5. EXPERIMENTAL DESIGN AND RESULTS

The proposed algorithm has been validated on the AR Face
dataset [15] in a gender classification task and comparative
evaluation performed relative to other four recent learning al-
gorithms. Experimental results are either taken as reported in
the respective papers or regenerated.

Images are classified as in [16] both globally and lo-
cally according to the representation errors. Global coding
is achieved by concatenating all common and class-cspecific
dictionaries as the mapping D while local coding encodes
each sample with D(com,ci). Reconstruction errors are calcu-
lated for each class-specific dictionary for classification.

Following the selection criterion in [16], we selected
a subset of non-occluded face images from the AR face
dataset [15]. The subset contains 50 males and 50 females
with each person having 14 images. For a fair comparison
with results reported in [16], we use the same set of training
and testing samples. The dictionary is trained using the first
25 males and 25 females with the remaining images used
as test set. The size (number of atoms in the dictionary) of
each class-specific dictionary was varied from 250 to 25;
the common dictionary was fixed at 50. The classification
results for both cases are shown in columns 2 and 3 of Ta-
ble 1. In general, the classification results of our method
in terms of both the local and global coding mechanisms
outperform all the other methods. Our results are over 3%
points better than those in LDL [16]. The local coding gen-
erally works better than global coding. In Table. 1 the worst
accuracy of our algorithm with smaller class-specific dictio-
naries and global coding is the same as LDL-LC using a 10
times larger class-specific dictionary and local coding. This
can be attributed to our use of a common dictionary which
encodes the general information for representation. A small
class-specific dictionary is still sufficient to represent the
discriminative components among classes. However, other
discriminative dictionary learning methods (e.g. COPAR) do

Table 1. Gender classification accucary on AR Face Dataset
for various dictionary sizes

Algorithm 250 100 50 25
DLSI [5] 94.0 97.0 95.4 93.7
COPAR [8] 93.4 95.3 94.1 93.0
FDDL-
LC(GC) [17]

94.3
(94.3)

96.1
(92.9)

93.7
(94.4)

93.7
(92.1)

LDL-
LC(GC) [16]

95.3
(94.8)

93.3
(93.0)

93.0
(92.3)

95.0
(92.4)

Ours-LC(GC) 98.6
(97.9)

99.0
(98.3)

98.6
(97.0)

98.3
(96.0)

not clearly define the shared and class-specific components
and this makes the common dictionary powerful enough for
representation when the class-specific dictionary becomes
small. Pairwise t-tests between our algorithm and others (see
Table 1) at α = 0.05 was each found to be statistically signif-
icant indicating that our algorithm outperform them. Overall
p < 0.021.

We further analyse the convergence of our algorithm by
investigating the value of the objective as well as the value of
the error tolerance e

Dci
j . Fig. 3 (a) illustrates the fast conver-

gence of the objective function in sparse coding stage. The
initial values of ej are around 0.7 because of the initialisa-
tion using KSVD and quickly goes down to around zero as
shown in Fig. 3 (b). As shown in Fig. 3 (b), the values of
ej during the optimisation process dropped continuously to-
wards zero, clearly indicating the gain from the property of
hinge loss function.
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Fig. 3. (a) Object values in the sparse coding stage. (b) The
values of ej for one subject over the training process.

6. CONCLUSION

A discriminative structured dictionary learning algorithm
based on representation error discrimination rule was pro-
posed and its performance verified. Class-specific dictionary
representation error was formulated as a criterion that en-
forces class-specific representation while making common
dictionary contribute to general sample representation. The
SVM-like formulation suggests possible extension to a non-
linear high-dimensional case by exploiting the kernel trick.
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