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ABSTRACT

Nonparametric detection of existence of an anomalous disk
over a lattice network is investigated. If an anomalous disk
exists, then all nodes belonging to the disk observe samples
generated by a distributionq, whereas all other nodes observe
samples generated by a distributionp that is distinct fromq.
If there does not exist an anomalous disk, then all nodes re-
ceive samples generated byp. The distributionsp andq are
arbitrary and unknown. The goal is to design statistically con-
sistent test as the network size becomes asymptotically large.
A kernel-based test is proposed based on maximum mean dis-
crepancy (MMD) which measures the distance between mean
embeddings of distributions into a reproducing kernel Hilbert
space (RKHS). A sufficient condition on the minimum size of
candidate anomalous disks is characterized in order to guar-
antee the consistency of the proposed test. A necessary condi-
tion that any universally consistent test must satisfy is further
derived. Comparison of sufficient and necessary conditions
yields that the proposed test is order-level optimal.

Index Terms— Consistency, maximum mean discrep-
ancy, nonparametric detection, reproducing kernel Hilbert
space.

1. INTRODUCTION

We study the problem of detecting existence of an anomalous
disk over a lattice network, in which each node observes a
random sample. If an anomalous disk exists, then all nodes
belonging to the disk take samples generated by an anoma-
lous distributionq. All other nodes in the network take sam-
ples generated by a typical distributionp. It is assumed thatp
andq are distinct. If there does not exist an anomalous disk,
then all nodes receive samples generated byp. We assume
that the distributionsp andq areunknown a priori, and hence
the problem is nonparametric. This is a composite hypothe-
sis testing problem, in which the null hypothesis corresponds
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to the case with no anomalous disk and the alternative hy-
pothesis corresponds to the case with existence of an anoma-
lous disk. The alternative hypothesis is composite becausethe
anomalous disk can be one of a number of candidate disks in
the network.

Detecting existence of an anomalous geometric struc-
ture in large networks has been extensively studied in the
literature. Most previous studies [1–10] have adoptedpara-
metricor semiparametricmodels, which assume that samples
are generated by known distributions such as Gaussian or
Bernoulli distributions, or the two distributions are known
to be different by a mean shift. However, such parametric
models may not always hold in real applications because dis-
tributions may not be known in advance, or even structures
of distributions may not be learned. More recently, in [11],a
nonparametric problem of detecting existence of an interval
over a line network was studied. Although it is assumed that
distributions are unknown in [11], a reference sequence of
samples generated from the typical distribution is assumedto
be available. The problem is easier with such an identified
reference sequence.

In contrast to previous studies, we study thenonparamet-
ric problem, in which not only distributions areunknown a
priori , but no reference samples are available either. We study
the problem of detecting the existence of a disk over a two-
dimensional network, and the network structure is more com-
plicated than the line network in [11]. Our study provides
further understanding of the impact of geometric structureon
detection performance.

In our problem, the distributions are unknown, and only
samples generated by the distributions are available. It isde-
sirable to find a way to measure the distance between distri-
butions based on samples. Towards this end, mean embed-
ding of distributions into a reproducing kernel Hilbert space
(RKHS) [12,13] is useful. The idea is to map probability dis-
tributions into an RKHS such that the distance between two
probability distributions can be measured by the distance be-
tween the corresponding mean embeddings in the RKHS. The
main advantage of such an approach is that the mean embed-
ding of a distribution can be easily estimated based on sam-
ples. This approach has been applied to solving the two sam-
ple problem in [14], in which the quantity ofmaximum mean
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discrepancy (MMD)was used as a metric of distance between
mean embeddings of two distributions. In [11], MMD was
used to develop tests for detection of existence of anoma-
lous intervals over a line network. In this paper, we further
generalize the MMD-based approach to studying a more dif-
ficult anomaly detection problem without reference samples
and with a more complicated network structure. Our study
necessarily involves new analysis of the performance due to
such generality beyond that in [11].

We assume that the network is ann-by-n lattice. We
are interested in the asymptotic scenario in which the net-
work size goes to infinity, i.e.,n → ∞, and the number of
candidate anomalous disks scales withn. Thus, the number
of sub-hypotheses under the alternative hypothesis also in-
creases, which causes the composite hypothesis testing prob-
lem to be more difficult. Asn becomes large, it is necessary
that the numbers of samples within and outside of each can-
didate anomalous disk scale withn fast enough in order to
provide more accurate information about both distributionsp
andq and guarantee asymptotically small probability of error.
Thus, the problem amounts to characterizing how the mini-
mum and maximum sizes of all candidate anomalous disks
should scale withn in order to accurately detect the existence
of an anomalous structure, where the size of a disk is defined
to be the number of nodes contained in the disk.

In this paper, we adopt the following notation to express
asymptotic scaling of quantities with the network sizen:

• f(n) = Ω(g(n)): there existc, n0 > 0 s.t. for alln >

n0, f(n) ≥ cg(n);
• f(n) = Θ(g(n)): there existc1, c2, n0 > 0 s.t. for all
n > n0, c1g(n) ≤ f(n) ≤ c2g(n);

• f(n) = ω(g(n)): for all c > 0, there existsn0 > 0 s.t.
for all n > n0, |f(n)| ≥ c|g(n)|.

Our main contribution lies in comprehensive analysis of
the performance guarantee for the MMD-based tests that we
propose to solve the problem. We show that asn goes to infin-
ity (i.e., the network size becomes large), if the minimum size
Dmin of candidate anomalous disks scales asΩ(log n), then
the proposed test is consistent. There is no condition on the
maximum sizeDmax of candidate anomalous disks because
even the largest disk cannot fully cover the entire lattice and
it can be shown that samples outside the largest disk are suffi-
cient to provide information about the distributionp. We fur-
ther derive a necessary condition onDmin that any test must
satisfy in order to be universally consistent for arbitraryp and
q. Comparison of sufficient and necessary conditions yields
that the MMD-based test is order-level optimal.

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1. Problem statement

We consider a two-dimensional lattice network (see Figure 1)
consisting ofn2 nodes placed at the corner points of a lattice.

Fig. 1. A two dimensional network with an anomalous disk.

We useD to denote a subset of nodes within adisk. Here, the
size of a diskD refers to the cardinality ofD, and is denoted
by |D|. Consider the following set of candidate anomalous
disks, which consists of all disks centered at a certain node
with integer radius:

D(a)
n = {D : Dmin ≤ |D| ≤ Dmax}, (1)

where|D| denotes the number of nodes within the diskD,
Dmin denotes the minimum number of nodes among the
candidate anomalous disks andDmax denotes the maximum
number of nodes among the candidate anomalous disks.

We assume that each nodei observes a random sample
Yi, for i = 1, . . . , n2. Under thenull hypothesisH0, Yi

for i = 1, . . . , n2 are independent and identically distributed
(i.i.d.) following a distributionp. Under thealternative hy-
pothesisH1, there exists a diskD ∈ D

(a)
n over whichYi (with

i ∈ D) are i.i.d. following a distributionq 6= p, and oth-
erwise,Yi are i.i.d. following the distributionp. Thus, the
alternative hypothesis is composite due to the fact thatD

(a)
n

contains multiple candidate anomalous disks, and these disks
differentiate from each other by their sizes and locations in
the network. We further assume that under both hypotheses,
each node observes only one sample.

We assume that the distributionsp andq arearbitrary and
unknown a priori. For this problem, we are interested in the
asymptotic scenario, in which the number of nodes goes to
infinity, i.e., n → ∞. The performance of a test for such
a system is captured by two types of errors. Thetype I er-
ror refers to the event that samples are generated from the
null hypothesis, but the detector determines that an anoma-
lous disk exists. We denote the probability of such an event
asP (H1|H0). The type II error refers to the case that an
anomalous disk exists but the detector claims that there is no
anomalous disk. We denote the probability of such an event
asP (H0|H1). We define the following risk to measure the
performance of a test:

R(n)
m = P (H1|H0) + max

D∈D
(a)
n

P (H0|H1,D). (2)

Definition 1. A test is said to be consistent if the riskR(n)
m →

0, asn → ∞.
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2.2. Preliminaries of MMD

We provide a brief introduction of the idea of mean embed-
ding of distributions into an RKHS [12, 13] and the metric
of MMD. SupposeP includes a class of probability distribu-
tions, and supposeH is the RKHS with an associated kernel
k(·, ·). We define a mapping fromP to H such that each dis-
tributionp ∈ P is mapped into an element inH as follows:

µp(·) = Ep[k(·, x)] =

∫

k(·, x)dp(x).

Here,µp(·) is referred to as themean embeddingof the dis-
tribution p into the Hilbert spaceH. Due to the reproducing
property ofH, it is clear thatEp[f ] = 〈µp, f〉H for all f ∈ H.

It is desirable that the embedding isinjective such that
eachp ∈ P is mapped to a unique elementµp ∈ H. It has
been shown in [13] and [15–17] that for many RKHSs such
as those associated with Gaussian and Laplacian kernels, the
mean embedding is injective. In order to distinguish between
two distributionsp andq, [14] introduced the following quan-
tity based on the mean embeddingsµp andµq of p andq in
the RKHS:

MMD [p, q] := ‖µp − µq‖H. (3)

It is also shown that

MMD [p, q] = sup
‖f‖H≤1

Ep[f(x)] − Eq[f(x)].

Due to the reproducing property of the kernel, it can be shown
that

MMD2[p, q] =Ex,x′ [k(x, x′)]− 2Ex,y[k(x, y)]

+ Ey,y′ [k(y, y′)],

wherex andx′ are independent but have the same distribution
p, andy andy′ are independent but have the same distribution
q. An unbiased estimate of MMD2[p, q] based onn samples
of x andm samples ofy is given by

MMD2
u[X,Y ] =

1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

k(xi, xj) (4)

+
1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(yi, yj)−
2

nm

n
∑

i=1

m
∑

j=1

k(xi, yj).

And it can be show thatE[MMD2
u[X,Y ]] = MMD2[p, q].

3. MAIN RESULTS

3.1. Test and performance

We construct a nonparametric test using the unbiased estima-
tor in (4) and the scan statistics. For each diskD, let YD

denote the samples in the diskD, andYD denote the samples
outside the diskD. We compute MMD2u,D(YD, YD) for all

disksD ∈ D
(a)
n . Under the null hypothesisH0, all samples

are generated from the distributionp. Hence, for eachD ∈

D
(a)
n , MMD2

u,D(YD, YD) yields an estimate of MMD2[p, p],
which is zero. Under the alternative hypothesisH1, there ex-
ists an anomalous diskD∗ in which the samples are generated
from distributionq. Hence, MMD2u,D∗(YD∗ , YD∗) yields an
estimate of MMD2[p, q], which is bounded away from zero
due to the fact thatp 6= q. Based on the above understanding,
we build the following test:

max
D:D∈D

(a)
n

MMD2
u,D(YD, YD)

{

≥ t, determineH1

< t, determineH0

(5)

wheret is a threshold parameter. It is anticipated that with
a sufficiently accurate estimate of MMD and an appropriate
choice of the thresholdt, the test (5) should provide desired
performance. We can further reduce the complexity of the
test (5) by the fast multiscale methods in [1]. The following
theorem characterizes the performance of the proposed test.

Theorem 1. Suppose the test(5) is applied to the nonpara-
metric problem described in Section 2.1. Further assume that
the kernel in the test satisfies0 ≤ k(x, y) ≤ K for all (x, y).
Then, the type I error is upper bounded as follows:

P (H1|H0) ≤ exp

(

3 logn

−
t2 min{Dmin(n

2 −Dmin), Dmax(n
2 −Dmax)}

8n2K2

)

, (6)

and the type II error is upper bounded bounded as follows:

P (H0|H1,D) ≤ exp

(

−
(MMD2[p, q]− t)2|D|(n2 − |D|)

8n2K2

)

,

for anyD ∈ D(a)
n (7)

wheret is the threshold of the test that satisfiest < MMD2[p, q].
Furthermore, the test(5) is consistent if

Dmin ≥
24K2(1 + η)

t2
log n, (8)

whereη is any positive constant.

The proof of the above theorem is omitted due to space
limitations. The detailed proof can be found in [18].

The above theorem implies that to guarantee consistency
of the proposed test, the minimum sizeDmin should scale on
the order ofΩ(log n). In fact, it should also be required that
n2 − Dmax scale on the order ofΩ(log n) for large enough
n. However, the largest disk within a two-dimensional lattice
network has radiusn2 and areaπn

2

4 ≈ 0.79n2, which contains
at mostcn2 nodes withc < 1 for largen. This implies that the
bound onDmax is satisfied automatically whenn is large. We
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further note that the above theorem implies that the number of
candidate anomalous disks in the setD

(a)
n is on the order of

Θ(n3), which is the same as the number of all disks. Hence,
at the order level, not many disks are excluded from being
anomalous.

Theorem 1 requires that the thresholdt in the test (5) be
less than MMD2[p, q]. In fact, information of MMD2[p, q]
may or may not be available depending on specific applica-
tions. In some cases, samples from anomalous events are also
collected, and hence MMD2[p, q] can be estimated reasonably
well by (4). In such cases, the thresholdt can be set as a con-
stant smaller than MMD2[p, q]. On the other hand, if samples
from q are not available, then the thresholdt needs to scale to
zero asn gets large in order to be asymptotically smaller than
MMD2[p, q]. We summarize these two cases in the following
corollaries.

Corollary 1. If the value MMD2[p, q] is known a priori, we
set the thresholdt = (1 − δ)MMD2[p, q] for any0 ≤ δ ≤
1. The test(5) is consistent, ifDmin satisfies the following
condition:

Dmin ≥
24K2(1 + η′)

MMD4[p, q]
logn, (9)

whereη′ is any positive constant.

Corollary 1 follows directly from Theorem 1 by setting
η′ = 1+η

(1−δ)2 − 1.

Corollary 2. If the value MMD2[p, q] is unknown, we set the
threshold t to scale withn, such thatlimn→∞ tn = 0. The test
(5) is consistent, ifDmin satisfies the following condition:

Dmin ≥
24K2(1 + η)

t2n
logn, (10)

whereη is any positive constant.

Corollary 2 follows directly from Theorem 1 by noting
thattn < MMD2[p, q] for largen.

We note that the above two corollaries demonstrate that
the prior knowledge about MMD2[p, q] is very important to
determine the capability for identifying anomalous events.
If MMD 2[p, q] is known, then an anomalous object at size
Ω(logn) can be resolved over the network. However, if such
knowledge is unknown, only bigger anomalous objects at size
ω(logn) can be resolved.

Moreover, we would like to study the conditions under
which our test (5) is universally consistent, i.e., consistent for
any arbitraryp andq. Such conditions should not depend on
the underlyingp andq.

Corollary 3. Suppose the test in(5) is applied to the non-
parametric problem described in Section 2.1. The test(5) is
universally consistent for any arbitraryp andq if

Dmin = ω(log n). (11)

Proof. If Dmin satisfies the condition (11), it also satisfies the
conditions (8), (9) and (10) withtn properly chosen for anyp
andq whenn is large enough.

3.2. Necessary condition and optimality

In Section 3.1, we characterize a sufficient condition onDmin

to guarantee that the proposed nonparametric test will be con-
sistent. In the following theorem, we give a necessary condi-
tions onDmin that any test must satisfy in order to be univer-
sally consistent for arbitraryp andq.

Theorem 2. For the nonparametric detection problem de-
scribed in Section 2.1, any test must satisfy the following con-
dition in order to be universally consistent for arbitraryp and
q:

Dmin = ω(logn). (12)

Outline of the Proof.The idea of the proof is to first lower
bound the risk by the Bayes risk of a simpler problem. Then
for such a problem, we show that there existp andq (in fact
Gaussianp andq) such that even the optimal parametric test
is not consistent if the condition (12) is not satisfied. This
thus implies that if (12) is not satisfied, no nonparametric test
is universally consistent for arbitraryp andq. The detailed
proof can be found in [18].

It can be seen that the necessary condition onDmin in
(12) matches the sufficient condition in (11) at the order level,
which implies that the proposed test is order-level optimalas
stated in the following theorem.

Theorem 3 (Optimality). Consider the problem of nonpara-
metric detection described in Section 2.1. The MMD-based
test (5) is order-level optimal in the terms of the minimum
size of all candidate disks required to guarantee universaltest
consistency for arbitraryp andq.

4. CONCLUSION

We have studied the nonparametric detection of the existence
of an anomalous disk over a two dimensional lattice network,
in which both the typical and the anomalous distributions can
be arbitrary and unknown. We have developed a nonparamet-
ric test using the MMD to measure the distance between the
mean embeddings of distributions into an RKHS. We have an-
alyzed the performance of our test, and provided a sufficient
condition on the minimum size of candidate anomalous disks
to guarantee the consistency of our test. We have further de-
rived a necessary condition on the minimum size of candidate
anomalous disks, which matches the sufficient condition at
the order level. This implies that our test is order-level opti-
mal. We believe that such an approach can be applied to study
other networks such as detecting the existence of an anoma-
lous rectangle inr-dimensional lattice networks, etc.

2397



5. REFERENCES

[1] E. Arias-Castro, D. L. Donoho, and X. Huo, “Near-
optimal detection of geometric objects by fast multiscale
methods,” IEEE Trans. Inform. Theory, vol. 51, no. 7,
pp. 2402–2425, July 2005.

[2] G. Walther, “Optimal and fast detection of spatial clus-
ters with scan statistics,”Ann. Statist., vol. 38, no. 2, pp.
1010–1033, 2010.

[3] P. M. Pacifico, C. Genovese, I. Verdinelli, and
L. Wasserman, “False discovery control for random
fields,” J. Amer. Stat. Assoc., vol. 99, pp. 1002–1014,
2004.

[4] E. Arias-Castro, E. J. Candes, H. Helgason, and
O. Zeitouni, “Searching for a trail of evidence in a
maze,” Ann. Statist., vol. 36, no. 4, pp. 1726–1757,
2008.

[5] L. Addario-Berry, N. Broutin, L. Devroye, and G. Lu-
gosi, “On combinatorial testing problems,”Ann. Statist.,
vol. 38, no. 5, pp. 3063–3092, 2010.

[6] E. Arias-Castro, E. J. Candes, and A. Durand, “Detec-
tion of an anomalous cluster in a network,”Ann. Statist.,
vol. 39, no. 1, pp. 278–304, 2011.

[7] J. Sharpnack, A. Rinaldo, and A. Singh, “Changepoint
detection over graphs with the spectral scan statistic,” in
Proc. International Conference on Artifical Intelligence
and Statistics (AISTATS), Scottsdale, AZ, May 2013.

[8] J. Sharpnack, A. Rinaldo, and A. Singh, “Detecting acti-
vations over graphs using spanning tree wavelet bases,”
in Proc. International Conference on Artificial Intelli-
gence and Statistics (AISTATS), Scottsdale, AZ, May
2013.

[9] J. Qian, V. Saligrama, and Y. Chen, “Connected sub-
graph detection,” inProc. International Conference on
Artifical Intelligence and Statistics (AISTATS), 2014, pp.
796–804.

[10] J. Qian and V. Saligrama, “Efficient minimax signal
detection on graphs,” inProc. Advances in Neural In-
formation Processing Systems (NIPS), 2014, pp. 2708–
2716.

[11] S. Zou, Y. Liang, and H. V. Poor, “A kernel-based
nonparametric test for anomaly detection over line net-
works,” in Proc. IEEE International Workshop on Ma-
chine Learning for Signal Processing (MLSP), 2014.

[12] A. Berlinet and C. Thomas-Agnan,Reproducing Kernel
Hilbert Spaces in Probability and Statistics, Kluwer,
2004.

[13] B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanck-
riet, and B. Scholkopf, “Hilbert space embeddings and
metrics on probability measures,”J. Mach. Learn. Res.,
vol. 11, pp. 1517–1561, 2010.

[14] A. Gretton, K. Borgwardt, M. Rasch, B. Schökopf, and
A. Smola, “A kernel two-sample test,”J. Mach. Learn.
Res., vol. 13, pp. 723–773, 2012.

[15] K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf,
“Kernel measures of conditional dependence,” inProc.
Advances in Neural Information Processing Systems
(NIPS), 2008.

[16] B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanck-
riet, and B. Scholkopf, “Injective Hilbert space embed-
dings of probability measures,” inProc. Annual Confer-
ence on Learning Theory (COLT), 2008.

[17] K. Fukumizu, B. Sriperumbudur, A. Gretton, and
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