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ABSTRACT to the case with no anomalous disk and the alternative hy-

] ] ) _ pothesis corresponds to the case with existence of an anoma-
Nonparametric detection of existence of an anomalous disf;s disk. The alternative hypothesis is composite bectese
over a lattice network is investigated. If an anomalous disk,omalous disk can be one of a number of candidate disks in
exists, then all nodes belonging to the disk observe samplgge network.
generated byadistributioplwh.eregs all qther n.odes observe Detecting existence of an anomalous geometric struc-
samples generated by a distributiptthat is distinct fromy. e in |arge networks has been extensively studied in the
If there does not exist an anomalous disk, then all nodes rerature. Most previous studies [1-10] have adopiath-
ceive samples generated py The distributiong andg are  etricor semiparametrinodels, which assume that samples
arbitrary and unknown. The goalis to design statistically¢  5r6 generated by known distributions such as Gaussian or
sistent test as the network size becomes asymptoticaf¢ lar gernoullj distributions, or the two distributions are know
Akernel-based test is proposed based on maximum mean dig; pe gifferent by a mean shift. However, such parametric
crepancy (MMD) which measures the distance between megfjodels may not always hold in real applications because dis-
embeddings of distributions into a reproducing kernel iitb (i tions may not be known in advance, or even structures
space (RKHS). A sufficient condition on the minimum size of o¢ istributions may not be learned. More recently, in [£L],
candidate anomalous disks is characterized in order t0- 9ugfonparametric problem of detecting existence of an interva
antee the consistency of the proposed test. Anecessary Congyer g line network was studied. Although it is assumed that
tion that any universally consistent test must satisfy ifer  gistriputions are unknown in [11], a reference sequence of
derived. Comparison of sufficient and necessary conditionggmples generated from the typical distribution is assumed
yields that the proposed test is order-level optimal. be available. The problem is easier with such an identified

Index Terms— Consistency, maximum mean discrep- reference sequence. _ _
ancy, nonparametric detection, reproducing kernel Hilber  In contrast to previous studies, we study ttemparamet-
space. ric problem, in which not only distributions atenknown a

priori, but no reference samples are available either. We study
the problem of detecting the existence of a disk over a two-
1. INTRODUCTION dimensional network, and the network structure is more com-
plicated than the line network in [11]. Our study provides
We study the problem of detecting existence of an anomalousirther understanding of the impact of geometric structure
disk over a lattice network, in which each node observes getection performance.
random sample. If an anomalous disk exists, then all nodes |n our problem, the distributions are unknown, and only
belonging to the disk take samples generated by an anomgamples generated by the distributions are available.diis
lous distributiong. All other nodes in the network take sam- sjrable to find a way to measure the distance between distri-
ples generated by a typical distributipnit is assumed that  butions based on samples. Towards this end, mean embed-
andgq are distinct. If there does not exist an anomalous diSkding of distributions into a reproducing kernel Hilbert spa
then all nodes receive samples generategh.byVe assume (RKHS) [12, 13] is useful. The idea is to map probability dis-
that the distributiong andg areunknown a priorj and hence tributions into an RKHS such that the distance between two
the problem is nonparametric. This is a composite hypotheprobability distributions can be measured by the distarese b
sis testing problem, in which the null hypothesis corresson tween the corresponding mean embeddings in the RKHS. The
) main advantage of such an approach is that the mean embed-
A ork f S éoC”F‘f‘fg_;ésLéz'.‘gT‘;]vgs\Nf;:E‘z)cf’rlt_‘id\/%ggr':‘Ni';g’;FZEERding of a distribution can be easily estimated based on sam-
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discrepancy (MMDyvas used as a metric of distance between : e : : :
mean embeddings of two distributions. In [11], MMD was Anomalous

used to develop tests for detection of existence of anoma- Disk : : :
lous intervals over a line network. In this paper, we further A e o o o
generalize the MMD-based approach to studying a more dif- o o o o o
ficult anomaly detection problem without reference samples . e o 00 00
and with a more complicated network structure. Our study o e o 00 00

necessarily involves new analysis of the performance due to

such generality beyond that in [11]. Fig. 1. A two dimensional network with an anomalous disk.
We assume that the network is arby-n lattice. We

are interested in the asymptotic scenario in which the net-

worg_glze goes tol |nf|n(;t_y,k|.e.m T o0 ﬁng thehnumberbof We useD to denote a subset of nodes withidiak Here, the
candidate anomalous disks scales withThus, the number _size of a diskD refers to the cardinality oD, and is denoted

of sub-hypo_theses under the alterpative hypot_hesis _aLso "By |D|. Consider the following set of candidate anomalous
creases, which causes the composite hypoth_e_s.ls testibg Pr'Qisks, which consists of all disks centered at a certain node
lem to be more difficult. As: becomes large, it is necessary with integer radius:

that the numbers of samples within and outside of each can-

didate anomalous disk scale withfast enough in order to D = {D: Dyin < |D| < Dinas}, 1)
provide more accurate information about both distribigion " n -

andq and guarantee asymptotically small probability of erroryhere|D| denotes the number of nodes within the disk
Thus, the problem amounts to characterizing how the minip . - denotes the minimum number of nodes among the
mum and maximum sizes of all candidate anomalous disk§andidate anomalous disks amwx denotes the maximum

should scale withn in order to accurately detect the existencenymper of nodes among the candidate anomalous disks.
of an anomalous structure, where the size of a disk is defined \ve assume that each nodebserves a random sample

to be the number of nodes contained in the disk. Y;, fori = 1,...,n2. Under thenull hypothesisHy, Y;
In this paper, we adopt the following notation to expresstor j = 1, ..., n2 are independent and identically distributed
asymptotic scaling of quantities with the network size (i.i.d.) following a distributionp. Under thealternative hy-
o f(n) = Q(g(n)): there exist,ng > 0 st.foralln > noihesis | there exists a disk € D) over whichy; (with
no, f(n) = cg(n); i € D) are iid. following a distributiony # p, and oth-
e f(n) = O(g(n)): there existcy, ca,ng > 0 s.t. forall  erwise,Y; are i.i.d. following the distributionp. Thus, the
n>mng, c1g(n) < f(n) < cag(n); alternative hypothesis is composite due to the fact THét
e f(n) =w(g(n)): forallc > 0, there existsip > 0s.t.  contains multiple candidate anomalous disks, and theks dis
forall n > no, [f(n)| > clg(n)|. differentiate from each other by their sizes and locations i

Our main contribution lies in comprehensive analysis ofthe network. We further assume that under both hypotheses,
the performance guarantee for the MMD-based tests that Weach node observes only one sample.
propose to solve the problem. We show that g®es to infin- We assume that the distributiopsndg arearbitrary and
ity (i.e., the network size becomes large), if the minimunesi  nknown a priori For this problem, we are interested in the
Duin of candidate anomalous disks scalesx#@®gn), then  asymptotic scenario, in which the number of nodes goes to
the proposed test is consistent. There is no condition on thﬂﬁnity, i.e., n — co. The performance of a test for such
maximum sizeD,,., of candidate anomalous disks because, system is captured by two types of errors. Ty | er-
even the largest disk cannot fully cover the entire lattice a oy refers to the event that samples are generated from the
it can be shown that samples outside the largest disk are suffiy|| hypothesis, but the detector determines that an anoma-
cient to provide information about the distributipnWe fur-  |gus disk exists. We denote the probability of such an event
ther derive a necessary condition bi,;, that any test must a5 p(H,|H,). Thetype Il error refers to the case that an
satisfy in order to be universally consistent for arbitragnd  anomalous disk exists but the detector claims that there is n
q. Comparison of sufficient and necessary conditions yieldgnomalous disk. We denote the probability of such an event
that the MMD-based test is order-level optimal. as P(Ho|H,). We define the following risk to measure the

performance of a test:

2. PROBLEM STATEMENT AND PRELIMINARIES
R = P(H,|Hp) + max P(Ho|Hi p). 2)

2.1. Problem statement peps

We consider a two-dimensional lattice network (see Figjire 1Definition 1. A test s said to be consistent if the rigk,’ —

consisting of2? nodes placed at the corner points of a lattice 0, asn — oo.
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2.2. Preliminaries of MMD disksD € DY, Under the null hypothesi#, all samples

We provide a brief introduction of the idea of mean embed-are generated from the distributign Hence, for eactD

(a) 2 7\ vi ;
ding of distributions into an RKHS [12, 13] and the metric 2 - MMD?, ;,(Yp, Y5) yields an estimate of MMBfp, p],

of MMD. SupposeP includes a class of probability distribu- Vich is zero. Under th*e. alternative hypothesis there ex-
tions, and supposH is the RKHS with an associated kernel ists an.anpma.llous disk* in which the samples are_generated
k(-,-). We define a mapping from® to H such that each dis- from distributiong. Hence, MM[?L,D* (Yp-, Ypr) yields an

tributionp € P is mapped into an element # as follows: estimate of MMD [p, ¢], which is bounded away from zero
due to the fact that £ ¢q. Based on the above understanding,

we build the following test:

pol) =By b, )] = [ k(. a)dp(a).
Here, 1, (-) is referred to as thenean embeddingf the dis- max MMD? (Y, Yp) (5)
tribution p into the Hilbert spacé(. Due to the reproducing ~ ?*P<P»
property of#, itis clear thatf, [f] = (u,, f)» forall f € H.

>t, determineH;
<t, determineH,
. . A wheret is a threshold parameter. It is anticipated that with
It is desirable that the embeddingigective such that a sufficiently accurate estimate of MMD and an appropriate

eachp € P is. mapped to a unique elemeng € H. It has choice of the threshold the test (5) should provide desired
been shown in [13] and [15-17] that for many RKHSs suc:E

th iated with G : d Laplacian k | erformance. We can further reduce the complexity of the
as those %szc;c_:lae Wi . au|SS|ar:jant da_tpt_aCIa_nh(la)rn;vs, st (5) by the fast multiscale methods in [1]. The following
mean embedding IS injective. In order o diSUNgUISh DEWEE 0 o characterizes the performance of the proposed test
two distributiong andg, [14] introduced the following quan-

tity based on the mean embeddingsand ., of p andgin  Theorem 1. Suppose the teb) is applied to the nonpara-

the RKHS: metric problem described in Section 2.1. Further assume tha
MMD [p, q] == [|up — f1qll2- (3)  the kernel in the test satisfiés< k(z,y) < K for all (z,y).
Itis also shown that Then, the type | error is upper bounded as follows:

Due to the reproducing property of the kernel, it can be shown ;2 min{ Dinin(n? — Dinin)s Dimax (1% — Dinax)
that - 82K , (6)

MMDQ[p, q] :Ezﬂzz[k(x,x')] — 2B, y[k(, y)]
+ Ey,y’[k(yv Z//)]a
wherez andz’ are independent but have the same distributiod”(#o|H1,p) < exp
p, andy andy’ are independent but have the same distribution

q. An unbiased estimate of MMtJp, ¢] based om samples foranyD € DY (7)
of z andm samples of; is given by

and the type Il error is upper bounded bounded as follows:

(_ (MMD?[p, q] — t)?|D|(n* — |D\))
8n2K? ’

wheret is the threshold of the test that satisfies MMD?[p, q].

1 non Furthermore, the teqp) is consistent if
MMDZ[X, Y] = ———=> "> k(i z)) (4)
n(n—1) = i 24K2%(1+n)
m m n m Dmin > t—2 lOg n, (8)
1 2
+t k(yi,yj) — — k(xi,y5)-
m(m — 1) ; ; U ; ; " wherer) is any positive constant.
And it can be show thaf[MMD2[X, Y]] = MMD2[p, ]. The proof of the above theorem is omitted due to space

limitations. The detailed proof can be found in [18].
The above theorem implies that to guarantee consistency

of the proposed test, the minimum sizk,;, should scale on
3.1, Test and performance the order of2(logn). In fact, it should also be required that

o n% — Dmax Scale on the order d®(logn) for large enough
We construct a nonparametric test using the unbiased estima. However, the largest disk within a two-dimensional lattic
tor in (4) and the scan statistics. For each digklet Yp  network has radiug and areaﬂlﬁ ~ 0.79n2, which contains
denote the samples in the digk andY5 denote the samples at mosten? nodes with: < 1 for largen. This implies that the
outside the diskD. We compute MM@‘D(Y& Yy) for all bound onD,,, . is satisfied automatically whenis large. We

3. MAIN RESULTS
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further note that the above theorem implies that the numiber droof. If D,,;, satisfies the condition (11), it also satisfies the
candidate anomalous disks in the €f’ is on the order of ~conditions (8), (9) and (10) with, properly chosen for any

©(n?), which is the same as the number of all disks. Henceandg whenr is large enough. O
at the order level, not many disks are excluded from being
anomalous. 3.2. Necessary condition and optimality

Theorem 1 requires that the thresheluh the test (5) be . . - "
less than MMﬁ[p, gl. In fact, information of MMD”[p, ql In Section 3.1, we characterize a sufficient conditiodR,,

may or may not be available depending on specific applicat-‘? guarantee that the_ proposed nonpar_ametrictest will be co
tions. In some cases, samples from anomalous events are agatent. In the following theorem, We give a necessary C_Ond'
collected, and hence MMilp, ¢] can be estimated reasonably tions onDI_mn that any t_est must satisfy in order to be univer-
well by (4). In such cases, the thresholcan be set as a con- Sally consistent for arbitrany andg.

stant smaller than MMBJp, ¢. On the other hand, if samples Theorem 2. For the nonparametric detection problem de-
from ¢ are not available, then the thresholeeds to scale to  scribed in Section 2.1, any test must satisfy the followorg ¢

zero asn gets large in order to be asymptotically smaller thangition in order to be universally consistent for arbitrapyand
MMD?[p, ¢]. We summarize these two cases in the followingy:

corollaries.

Corollary 1. If the value MMDB [p, ¢] is known a priori, we Drin = w(logn). (12)

set the threshold = (1 — §)MMD?[p, ¢] for any0 < 6 < Qutline of the Proof.The idea of the proof is to first lower
1. The test(5) is consistent, ifDyi, satisfies the following hound the risk by the Bayes risk of a simpler problem. Then

condition: for such a problem, we show that there exisindg (in fact
24K2%(1 + 1) Gaussiarp andq) such that even the optimal parametric test
Diin > MMD ] logn, (9)  is not consistent if the condition (12) is not satisfied. This
4 thus implies that if (12) is not satisfied, no nonparame##t t
wherer’ is any positive constant. is universally consistent for arbitragyandq. The detailed

Corollary 1 follows directly from Theorem 1 by setting proof can be found in [18] =

n = (11%32 -1 It can be seen that the necessary condition/gg,, in

. (12) matches the sufficient condition in (11) at the ordeelev
Corollary 2. If the value MMD p, g] is unknown, we setthe  hich implies that the proposed test is order-level optiagal
threshold t to scale with, such thatim,, ... ¢, = 0. The test stated in the following theorem.

(5) is consistent, ifD,,;,, satisfies the following condition:

Theorem 3 (Optimality). Consider the problem of nonpara-

2
Dinin > 24K7(1 +n) logn, (10)  metric detection described in Section 2.1. The MMD-based
t test (5) is order-level optimal in the terms of the minimum

size of all candidate disks required to guarantee univetest
consistency for arbitrary andq.
Corollary 2 follows directly from Theorem 1 by noting

thatt,, < MMD?[p, ¢] for largen.

We note that the above two corollaries demonstrate that 4. CONCLUSION
the prior knowledge about MMtlp, g] is very important to g have studied the nonparametric detection of the existenc
determlr;e the capability for identifying anomalous events,t an anomalous disk over a two dimensional lattice network,
If MMD “[p, g] is known, then an anomalous object at siz&jn \yhich hoth the typical and the anomalous distributiors ca
Q(logn) can be resolved over the network. However, if suchyg arpitrary and unknown. We have developed a nonparamet-
knowledge is unknown, only bigger anomalous objects at Sizg¢ test using the MMD to measure the distance between the
w(logn) can be resolved. . mean embeddings of distributions into an RKHS. We have an-

Moreover, we would like to study the conditions under yy7eq the performance of our test, and provided a sufficient
which our test (5) is universally consistent, i.e., comsisfor o ition on the minimum size of candidate anomalous disks
any arbitraryp andq. Such conditions should not depend ony, garantee the consistency of our test. We have further de-
the underlying andq. rived a necessary condition on the minimum size of candidate
Corollary 3. Suppose the test i5) is applied to the non- anomalous disks, which matches the sufficient condition at

parametric prob'em described in Section 2.1. The (5;15 the order level. This Implles that our test is Ol’del’-levej-op

wherer) is any positive constant.

universally consistent for any arbitragyandg if mal. We believe that such an approach can be applied to study
other networks such as detecting the existence of an anoma-
Diyin = w(logn). (11)  lous rectangle im-dimensional lattice networks, etc.
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