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ABSTRACT

Partial face recognition is a problem that often arises in
practical settings and applications. We propose a sparse
representation-based algorithm for this problem. Our method
firstly trains a dictionary and the classifier parameters in a
supervised dictionary learning framework and then aligns
the partially observed test image and seeks for the sparse
representation with respect to the training data alternatively
to obtain its label. We also analyze the performance limit
of sparse representation-based classification algorithms on
partial observations. Finally, face recognition experiments
on the popular AR data-set are conducted to validate the
effectiveness of the proposed method.

Index Terms— Face Recognition, Image Alignment, S-
parse Representation , Dictionary Learning

1. INTRODUCTION

The face recognition task attracts much attention because of
its practical use for safety and surveillance purposes as well
as the potential to understand how human-beings identify d-
ifferent people. Various approaches have been proposed. A-
mong them, sparse representation-based classification (SRC)
pioneered by J. Wright et al. is one of the simplest meth-
ods but still provides state-of-the-art performance [1]. The
authors showed, by using an over-complete dictionary, sparse
representation can be treated as a high-dimensional represen-
tation and classification is preformed on top of that. However,
as with almost all of other current face recognition systems,
sparse representation-based method relies highly on the suc-
cess of solving sparse coding, which requires accurate align-
ment between training data and testing data.

In practice, much of test data are collected in uncontrolled
conditions with the possibility of severe occlusion or missing
information. This leads to the partial face recognition prob-
lem. In these settings, one of the most common issues is that
the partial test data obviously do not align well with the train-
ing data. One may pre-process the data to achieve the same
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alignment. A popular approach would be detecting local fea-
tures and align data by normalizing the detected features geo-
metrically. However, this approach will fail whenever feature
detection fails, which is highly likely since given partial data
usually lacks these features. Another solution is accounting
for every possible translations via a super-redundant dictio-
nary, which certainly would result in exorbitant computation-
al/memory cost.

Some of partial face recognition algorithms are based on
finding transform-invariant features such as Scale-invariant
feature transform (SIFT) in MKD-SRC [2], Gabor Ternary
Pattern (GTP) [3] , pooled sparse codes from SIFT [4] or lo-
cal patches [5], etc. Others recover the transformation and
solve the sparse code simultaneously as in [6], [7], [8].

Reported success of local-feature-based holistic face
recognition algorithms implies that the possibility of recogni-
tion based on a few discriminative local features. Moreover,
Inspired by human-beings’ ability to identify face relying on
partial observations, another motivation for us to study the
partial face recognition problem is the intriguing question:
given limited observations, how much information is enough
to reliably identify a person?

In this paper, we propose an approach to solve the afore-
mentioned problem by alternatively finding the alignment
and sparse coding. Main contributions are: (i) Our proposed
framework make recognition task with partial observations
efficiently solvable with different aligning conditions in su-
pervised dictionary learning (SDL) framework [9]; (ii) Our
method can be easily extend to partial observations almost in
the form of any shape although for simplicity we demonstrate
the one patch case; (iii) Sufficient conditions that lead to
correctly classification on partial observations are explored.

2. METHOD

The problem is formulated as follows: given well-aligned
holistic faces with labels as training data, partial face recog-
nition task aims at classifying partially observed faces with-
out any alignment information. Under supervised dictionary
learning framework, we propose an approach that alternative-
ly finds the sparse code as well as the best possible alignment.
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Notations:

Let T1, T2 be the sets of training samples, and the testing sam-
ples respectively, where ∀ yi ∈ T1,yi ∈ Rm and yt ∈ T2 are
not necessarily of the same size. Also, ∀ k ∈ N+, [k] :=
{1, 2, .., k}. N denotes the number of different classes in the
training data set. Let li be the label associated with yi ∈
T1, then and li ∈ L := [N ]. K is the label matrix of T1.
D ∈ Rm×n denotes the dictionary and x ∈ Rn represents
sparse code and W provides the parameter of the classifi-
er. Let f(x,W) represents the model of the linear classifier:
f(x,W) = Wx + b [10].

We define a partial observation operator (·)Λ,Λ ⊆ [m] as
follows. Let IΛ denote sub rows of identity matrix with row
indices in the set Λ. Then for y ∈ Rm, (y)Λ := IΛy. In
short, Λ contains the support of image pixels that we are able
to observe whereas its complement Λc indicates the support
of missing information. For D ∈ Rm×n,DΛ := IΛD simply
selects the corresponding rows in the observation set.

2.1. Supervised Dictionary Learning and Classification

2.1.1. Supervised Dictionary Learning

A classical approach to seek the dictionary that yields sparse
representation is given as [11] [12]:

min
D,x

(1/2)
∑
i∈T1

‖yi −Dxi‖22 + ρ sparsity(xi), ρ > 0, (1)

where sparsity(·) denotes a regularizer that encourages sparsi-
ty where common choices are `0, `1 norms. LetRs(li, f(x,W))
indicates the classification loss. By minimizing classification
loss and data fidelity ‖yi −Dxi‖22, the supervised dictionary
learning framework can be described as follows:

(D?,x?,W?) = arg min
D,x,W

∑
i∈T1

Rs(li, f(xi(yi,D),W))

+β‖yi −Dxi‖22 + ρ sparsity(xi), β > 0.
(2)

For solving sparse coding, `0 minimization can be solved
by Iterative Hard Thresholding (IHT) [13] whereas Orthog-
onal Mathching Pursuit (OMP) [14] for corresponding con-
straint minimization and the `1 minimization can be solved
via Least Absolute Shrinkage and Selection Operator [15], or
Gradient Projection for Sparse Reconstruction [16].

2.1.2. Classification

If test data yt ∈ T2 has the same alignment condition as the
training data, then x? can be solved by traditional sparse cod-
ing. The technique of solving x? for partial data will be p-
resented in Section 2.2. After obtaining x?, the label assign-
ment bases on the class that yields the minimum classification
loss among all classes:

ĉ(yt) = arg min
li∈L

Rs(li, f(x?(yt,D?),W?)). (3)

2.2. Alternating Alignment and Sparse Coding

Given partially observed test data yt, let yh represent the
corresponding holistic face, which is unknown (and in this
scenario, the recovery is not necessary). We would like to
solve for sparse code of the test data with partial constraint
on the unknown observed set Λ. We know that (D?x)Λ =
IΛ(D?x) = (IΛD?)x = D?Λx and yt = yhΛ. Considering
minimizing the data fidelity term on Λ: ‖(yh −D?x)Λ‖22 =
‖yhΛ −D?Λx‖22, then the problem can be recast as:

(x?,Λ?) = arg min
α∈Rn,Λi∈S

(1/2)‖yt −D?Λx‖22 + ρ sparsity(x),

(4)
where S is the subset of all candidates that Λ could take from.
(4) is solved by Alternating Minimization. Details are depict-
ed in Algorithm 1.

However, for a learnt dictionary D?, each column no
longer has the physical meaning as a vector in the training
data-set, so as the alignment. Updating alignment Λ seeks a
optimal partial set resulting smaller representation error and
sparsity level with respect to the optimal dictionary.

Algorithm 1 Partial Face Recognition based on Alternating
Alignment and Sparse Coding(AASP)

1: Require: Training set, label set T1,K; Testing set T2

2: Supervised Dictionary Learning:
Input: T1,K, Output: (D?,W?).

3: for i = 1, 2, ..|S| do
4: xi? = arg min

x∈Rn

(1/2)‖yt −D?Λi
x‖22 + ρ sparsity(x),

5: end for
6: Λ? = arg min

Λi∈S
(1/2)‖yt −D?Λi

xi?‖22 + ρ sparsity(xi?)

7: x? = arg min
x∈Rn

(1/2)‖yt −D?Λ?
x‖22 + ρ sparsity(x)

8: Return: c(yt): classification by (3).

2.3. Implementation Details

In our implementation, we use linear prediction with zero off-
set (b = 0) as classifier and the squared loss as the loss func-
tion Rs. The label is represented by their binary expression
q. For li = j, j ∈ [N ], then qi = eTj = [0, 0, ..1, 0, .., 0]T .
Therefore, Rs(li, f(x,W)) = ||qi −Wxi||22.

In testing, we demonstrate a simple approach to find the Λ
in step 6 of Algorithm 1. A more complicated solution which
extensively searching alignment uses optical flow is given in
[8]. Here, Λ is initialized via mean face matching. The mean
face ym of the training set is calculated by taking the average
of training samples. In the case when partially observed data
is connected and rectangular, the partial observation operator
Λ can be uniquely determined by coordinates of the top left
pixel (pi, pj) and its width b and height h. Let B and H
be the width and height of the holistic image respectively;
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SΩ contains all operators in the form of Λ(p1, p2, b, h) that
selects a patch same size as the test, then mean face matching
is simply:

Λ?mean(pa, pb, b, h) = arg min
Λ∈S

‖yt − (ym)Λ‖2. (5)

To reduce the computational complexity, we restrict the possi-
ble region from SΩ to S, which includes be all operators gives
partial observations that are within a local neighbourhood of
cn pixels of (y)Λ?

mean
.

3. ANALYSIS

In general, partially observed data cannot contain more in-
formation than entirely observed data. Unlike the scenario in
matrix completion with randomly missing observations, the
observed set is highly spatially coherent. It is not possible to
recover the entire data with high accuracy and then preform
classification. However, in practice, successful classification
based on local discriminative features shows the possibility of
accurate classification based on partial data.

3.1. Data Model

In the sparse representation based classification framework,
we assume that the data model is y = D?x + z, where
y, z ∈ Rm,x ∈ Rn and x is s-sparse, s < n and the sparse
representation x for data of different classes are quite distinc-
tive to each other. Hence we might expect to find good repre-
sentation D? along with a reasonable classifier parametrized
by W? from the learning process. We also assume that there
exists a recovery algorithm that can perfectly recover the true
support set Λ? of the partial data. To simplify the notations,
we drop the subscript “ ? ” from D?,W?,Λ? in this section.

Let us assume that we get the optimal dictionary D, and
test data is correctly classified in solving y = Dx. Now the
question becomes: does it exist a partial region Λ ⊂ [m] such
that solving x via yΛ = DΛx still yields the same correct
classification result?

3.2. The Noiseless Case

Remark 1 ‖z‖ = 0, for Λ ∈ [m], |Λ| = rank(D), and rows
of DΛ are linearly independent, then solving yΛ = DΛx is
equivalent to solving y = Dx.

In solving y = Dx, only rank(D) number of equations is
needed. For m > n , rank(D) ≤ n, at most n features are
needed for solving y = Dx. Λ can be computed by finding
linearly independent rows in D.

When x is fairly sparse, compressive sensing theory
[17] indicates that the number of measurements needed is
O(s log(n)), which is possibly smaller than n.

3.3. The Noisy Case

Now, consider the case when ‖z‖ 6= 0, we analyze the sparse
penalty being the `1 norm for its sub-differentiability. Esti-
mation of labels can be formulated as solving the system:

Q(H): arg min
li∈L

Rs(li, f(xh?(y,D),W)) subject to

xh? = arg min(1/2)‖y −Dx‖22 + ρ‖x‖1.
(6)

On the other hand, similar procedure based on partial obser-
vation Λ is equivalent to solving:

Q(P): arg min
li∈L

Rs(li, f(xp?(yΛ,DΛ),W)) subject to

xp? = arg min(1/2)‖yΛ −DΛx‖22 + ρ‖x‖1.
(7)

As long as the solutions for Q(H) and Q(P) match, the
classification based on partial observation is as accurate as
the case with complete observation. Ideally, sparse codes are
the same, which yields to the following sufficient condition.

Lemma 2 (Sufficient Condition): For Λ such that xp? =
arg min(1/2)‖yΛ − DΛx‖22 + ρ‖x‖1, if xp? also solves
min(1/2)‖yΛc −DΛcx‖22, then classification from partially
observed data is just as accurate as with complete data.

Proof: Let xp? = arg min(1/2)‖yΛ − DΛx‖22 + ρ‖x‖1.
Let g1,Λ := (1/2)‖yΛ − DΛx‖22 + ρ‖x‖1 , then 0 ∈
(∂g1,Λ/∂x)|x=xp

?
. Also, let gΛc := (1/2)‖yΛc −DΛcx‖22.

Since ‖y −Dx‖22 = ‖yΛ −DΛx‖22 + ‖yΛc −DΛcx‖22,
xh? = arg min ρ‖x‖1 + (1/2)‖yΛ −DΛx‖22 + (1/2)‖yΛc −
DΛcx‖22 = arg min g1,Λ + gΛc . If xp? solves g1,Λ and gΛc ,
then 0 ∈ (∂g1,Λ/∂x)|x=xp

?
+ (∂gΛc/∂x)|x=xp

?
, xh? = xp?.

{x : 0 ∈ (∂gΛc/∂x)} has close form solution {D†Λcy +
v : v ∈ Null(DΛc)}, where † denotes the pseudo-inverse. If
this solution set intersects with {x : x = arg min g1,Λ}, then
such a xp? = xh? exists.

If ly is the true label, then arg minRs(li, f(x(y,D),W))
= arg minRs(li, f(x(yΛ,DΛ),W)) = ly . �

Given y,D and Λ, we could tell whether the set of fea-
tures is good enough to return the same label as solving Q(H).

4. EXPERIMENTAL RESULTS

We perform our experiments on the cropped AR data-set [18]
containing 100 subjects with half males and half females. For
faster computation, we down-sample the data-set by a ratio of
0.5 and the resulting size is 82 × 60. Under the assumption
that training data are well-aligned holistic faces, we exclude
pictures taken with scarfs or sunglasses and only use types
1−7 and types 14−23 for each person in the data-set, which
contains 4 different emotions and 4 lighting conditions.

In the experiment, we randomly partition the data-set:
half for training and remaining for testing. To test our algo-
rithm, we generate 3 specific patterns (Type 1-3) with fixed
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coordinates and 3 random patterns with controlled sizes (Type
4-6) in which the width b and height h are randomly generat-
ed from a predefined range: b ∈ [r1B, r2B], h ∈ [r1H, r2H]
and (r1, r2) are (0.5, 0.9), (0.3, 0.8) and (0.2, 0.5) respec-
tively. Examples are shown in Fig. 1.

Different dictionary learning algorithms are adopted in
training. We apply online dictionary learning (ODL) [19], and
label consistent K-SVD dictionary learning (LC-KSVD) [20]
for constraint `1, `0 minimization respectively. We compare
our algorithm with supervised dictionary learning methods
using the same mean-face matching initialization (denoted
by MF-Match) and one of the state-of-the-art feature-based
partial face recognition algorithms: MKD-SRC [2].

In our experiments, all dictionary learning algorithms
share the same parameter setting: ρ = 0.1 , β = 1, dictionary
size n = 700, and number of iterations is 10. The sparsity
level of OMP is set to be 30 and the neighborhood size cn
is 5. Table 1 lists the averaged accuracy among all classes.
Cumulative Matching Curves for two hard cases (Type 3, 6
with small observation sets) are depicted in Fig. 2 and Fig. 3.

Our algorithm performs better than others in both rel-
atively easy cases (Type 1, 4) and hard cases (Type 3, 6).
In SDL with MF Match and AASP, `1 and `0 minimization
algorithms perform similarly. For holistic face recognition
(Type 0), two methods coincidence since SΩ contains only
one element: the whole observation set. All algorithms per-
form reasonably well when size of the observation set is large
and when decreasing, they all suffer. By Section 3, larger size
of Λ leads to tighter relaxation of the original constraint in
(6), and therefore one would expect better result. Ours is rel-
atively robust against the decreasing size of Λ and especially
will not be effected that much when observation contains
only part of major local areas such as eyes used for feature
extraction as feature based methods.

Fig. 1: Examples: Col. 1: holistic faces; Col. 2 (top to bottom):
fixed patterns 1 (a large partial block), 2 (left face), 3 (mouth and
chin); Col. 3, 4, 5 : random patterns 4, 5, 6 .
Size of partial faces among types: 0 > 1 > 2 > 3, 0 > 4 > 5 > 6

Fig. 2: Type 3: Cumulative Match Score Curves

Fig. 3: Type 6: Cumulative Match Score Curves

MKD MF-Match AASP
Types -SRC [2] -ODL -LC-KSVD -ODL -LC-KSVD

0 0.93 0.96 0.97 0.96 0.97
1 0.66 0.63 0.64 0.90 0.87
2 0.58 0.31 0.37 0.76 0.79
3 0.29 0.19 0.18 0.42 0.40
4 0.68 0.60 0.63 0.83 0.83
5 0.47 0.41 0.41 0.65 0.65
6 0.15 0.19 0.15 0.39 0.38

Table 1: Rank-1 accuracy with various partial patterns

5. CONCLUSIONS AND FUTURE WORK

We develop a sparse representation-based classification algo-
rithm called AASP to solve the partial face recognition prob-
lem. Experiments shows that our proposed method performs
better than other comparison methods especially in the case
of severe information missing. In the future, we plan to ex-
tend our method to handle various other types of corruptions
and explore the lower bound of size of partial data that still
provides correct classification in the noisy case.
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