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ABSTRACT

This paper presents a new methodology for clustering multi-
variate time series leveraging optimal transport between cop-
ulas. Copulas are used to encode both (i) intra-dependence of
a multivariate time series, and (ii) inter-dependence between
two time series. Then, optimal copula transport allows us to
define two distances between multivariate time series: (i) one
for measuring intra-dependence dissimilarity, (ii) another one
for measuring inter-dependence dissimilarity based on a new
multivariate dependence coefficient which is robust to noise,
deterministic, and which can target specified dependencies.

Index Terms— Clustering; Multivariate Time Series; Op-
timal Transport; Earth Mover’s Distance; Empirical Copula;
Dependence Coefficient

1. INTRODUCTION

Clustering is the task of grouping a set of objects in such a
way that objects in the same group, also called cluster, are
more similar to each other than those in different groups. This
primitive in unsupervised machine learning is known to be
hard to formalize and hard to solve. For practitioners, the
proper choice of a pair-wise similarity measure, features or
representation, normalizations, and number of clusters is a
supplementary burden: it is most often task and goal depen-
dent. Time series, sequences of data points or ordered sets of
random variables, add complexity to the clustering task be-
ing dynamical objects. In the survey [1], the author classifies
time series clustering into three main approaches: working (i)
on raw data (e.g., time-frequency [2]), (ii) on features (e.g.,
wavelets, SAX [3]), (iii) on models (e.g., ARIMA time series
[4]). Regardless of the method chosen, dependence between
time series (usually measured with Pearson linear correlation)
is a major information to study. This is notably the case for
fMRI, EEG and financial time series. Obviously, dependence
does not amount for the whole information in a set of time
series. For example, in the specific case of N time series
whose observed values are drawn from T independent and
identically distributed random variables, one should take into
account all the available information in these N time series,
i.e. dependence between them and the N marginal distribu-
tions, in order to design a proper distance for clustering [5].
Many of the time series datasets which can be found in the lit-

erature consist in N real-valued variables observed T times,
while in this work we will focus on N × d × T time series
datasets, i.e. N vector-valued variables in Rd observed T
times. For instance, N horses can be monitored through time
using d sensors placed on their body and limbs. Clustering
these multivariate time series using dependence information
only is already challenging: (i) dependence information can
be found at two levels, intra-dependence between the d time
series (x

(i)
1 , . . . , x

(i)
d ), 1 ≤ i ≤ N , and inter-dependence be-

tween the N time series (X1, . . . , XN ); (ii) efficient multi-
variate dependence measures are required. Back to the pre-
vious example, intra-dependence between the d time series
quantifies how the d sensors jointly move and thus may help
to cluster horses based on their gaits (e.g., walk, trot, canter,
gallop, pace) while inter-dependence between the N time se-
ries quantifies how the N horses jointly move and thus may
help to cluster horses based on their trajectories. Recently,
several new dependence coefficients between random vari-
ables have been proposed in the literature ([6], [7], [8], [9])
demonstrating the interest and the difficulty of obtaining such
measures. However, for the clustering task of multivariate
time series, most of them are inappropriate: (i) some are not
multivariate measures, (ii) some are not robust, i.e. estimate
dependence may strongly vary from one estimation to another
and may yield erroneously high dependence estimate between
independent variables as it is in the case with the Randomized
Dependence Coefficient (RDC) [7] as noticed in [8], (iii) they
aim to capture a wide range of dependence equitably [9] and
thus are not application-oriented, i.e. one cannot specify the
dependencies we want to focus on and ignore the others. Con-
sequently, shortcoming (ii) leads to spurious clusters, and (iii)
to ill-suited clusters for specific tasks besides increasing the
risk of capturing spurious dependence, e.g., the Hirschfeld-
Gebelein-Renyi Maximum Correlation Coefficient equals 1
too often [8]. In this work, we will therefore propose a new
multivariate dependence measure which was motivated by ap-
plications (clustering credit default swaps based on their noisy
term structure time series [10]), and the need of robustness on
finite noisy samples. Our dependence measure leveraging sta-
tistical robustness of empirical copulas and optimal transport
achieves the best results on the benchmark datasets, yet the
experiment is biased in our favor since we specify to our co-
efficient the dependence we look for (by definition) unlike the
other dependence measures.
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Contributions
In this article, we will introduce (i) a method to compare
intra-dependence between two multivariate time series, (ii)
a dependence coefficient to evaluate the inter-dependence
between two such time series, (iii) a method that allows
to specify the dependencies our coefficient should mea-
sure. The novel dependence coefficient proposed is bench-
marked on experiments [11] based on R code from [7]1.
Tutorial, implementation and illustrations are available at
www.datagrapple.com/Tech.

2. RELATED WORK

Clustering multivariate time series (MTS) datasets has been
much less explored than clustering univariate time series [12]
despite their ubiquity in fields such as motion recognition
(e.g., gaits), medicine (e.g., EEG, fMRI) and finance (e.g.,
fixed-income securities yield curves or term structures). A
general trend for clustering N multivariate time series is to
consider them as N datasets of dimension d × T , then in
order to obtain a clustering of the N datasets, one lever-
ages a similarity measure between two such d × T MTS
datasets among Euclidean Distance, Dynamic Time Warp-
ing, Weighted Sum SVD, PCA similarity factor and other
PCA-based similarity measures [13] before running a stan-
dard algorithm such as k-means. In [14], the authors improve
on the PCA-based methodology by adding another similar-
ity factor: a Mahalanobis distance similarity factor which
discriminates between two datasets that may have similar
spatial orientation (similar principal components) but are lo-
cated far apart. Authors finally combine orientation (PCA)
and location (Mahalanobis distance) with a convex combi-
nation to feed a k-means algorithm leveraging the resulting
dissimilarities. Paving another way for research in [12], the
authors map each individual time series to a fixed-length
vector of non-parametric statistical summaries before apply-
ing k-means on this feature space. In this work, we focus
instead on dependence which is not yet well understood in
the multivariate setting (e.g., many different definitions of
mutual information, the copula construction breaks down for
non-overlapping multivariate marginals [15]). To alleviate
the former shortcoming, we propose to study separately intra-
dependence and inter-dependence. In line with the related
research, we focus on defining proper distances between the
multivariate time series rather than elaborating on the cluster-
ing algorithm.

3. CLUSTERING INTRA-DEPENDENCE

We refer to the dependence between the d univariate time se-
ries of a d-variate time series as intra-dependence. We present

1https://github.com/lopezpaz/randomized_
dependence_coefficient

the mathematical tools to capture this intra-dependence and
how to compare it between two d-variate time series in order
to perform a clustering based on this information.

3.1. The Copula Transform

Since “the study of copulas and their applications in statis-
tics is a rather modern phenomenon” and “despite overlap-
ping goals of multivariate modeling and dependence identifi-
cation, until recently the fields of machine learning in general
[. . . ] have been ignorant of the framework of copulas” [16],
we recall in this section the basic definitions and results of
Copula Theory required for clustering with optimal copula
transport.

Definition. The Copula Transform. LetX = (X1, . . . , Xd)
be a random vector with continuous marginal cumulative dis-
tribution functions (cdfs) Pi, 1 ≤ i ≤ d. The random vector
U = (U1, . . . , Ud) := P (X) = (P1(X1), . . . , Pd(Xd)) is
known as the copula transform. Ui, 1 ≤ i ≤ d, are uniformly
distributed on [0, 1] (the probability integral transform): for
Pi the cdf of Xi, we have x = Pi(Pi

−1(x)) = Pr(Xi ≤
Pi
−1(x)) = Pr(Pi(Xi) ≤ x), thus Pi(Xi) ∼ U [0, 1].

Theorem. Sklar’s Theorem [17]. For any random vec-
tor X = (X1, . . . , Xd) having continuous marginal cdfs Pi,
1 ≤ i ≤ d, its joint cumulative distribution P is uniquely
expressed as

P (X1, . . . , Xd) = C(P1(X1), . . . , Pd(Xd)),

where C, the multivariate distribution of uniform marginals,
is known as the copula of X .

Copulas are central for studying the dependence between
random variables: their uniform marginals jointly encode all
the dependence. One can observe that in most cases, we do
not know a priori the margins Pi, 1 ≤ i ≤ d, for applying
the copula transform on (X1, . . . , Xd). [18] has introduced a
practical estimator for the uniform margins and the underly-
ing copula, the empirical copula transform.

Definition. The Empirical Copula Transform [18].
Let (Xt

1, . . . , X
t
d), t = 1, . . . , T , be T observations

from a random vector (X1, . . . , Xd) with continuous mar-
gins. Since one cannot directly obtain the corresponding
copula observations (U t1, . . . , U

t
d) = (P1(Xt

1), . . . , Pd(X
t
d)),

where t = 1, . . . , T , without knowing a priori (P1, . . . , Pd),
one can instead estimate the d empirical margins PTi (x) =
1
T

∑T
t=1 1(Xt

i ≤ x), 1 ≤ i ≤ d, to obtain the T empiri-
cal observations (Ũ t1, . . . , Ũ

t
d) = (PT1 (Xt

1), . . . , PTd (Xt
d)).

Equivalently, since Ũ ti = Rti/T , Rti being the rank of obser-
vation Xt

i , the empirical copula transform can be considered
as the normalized rank transform.

Few remarks: the empirical copula transform is (i) easy
and fast to compute, i.e. sorting D arrays of length T ,
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Fig. 1. The copula transform invariance property to strictly
increasing transformation: Let X ∼ U [0, 1] and Y ∼ ln(X).
Pearson correlation cannot retrieve the perfect deterministic
dependence on raw data (left panel) but it can on the copula
transform (right panel).

O(DT log T ); (ii) consistent and converges fast to the un-
derlying copula [19], [6]. Authors leverage the empirical
copula transform for several purposes: [6] benefit from its
invariance to strictly increasing transformation of Xi vari-
ables (Fig. 1) for improving feature selection, [7] to obtain
a dependence coefficient invariant with respect to marginal
distribution transformations, and [5] to study separately de-
pendence and margins for clustering.

3.2. Optimal Transport between Copulas

Optimal transport is an old problem in applied mathematics
anchored in Gaspard Monge seminal treatise which has re-
ceived a renewed attention from both the pure and applied
mathematics communities. Its recent theoretical development
are detailed in [20]. Meantime, applications have been found
in several domains such as mathematical economics [21], im-
age retrieval [22], image recoloring [23] and univariate em-
pirical probability distributions clustering [24].

Solving an optimal transport problem amounts to find
the optimal transportation and allocation of resources: for
instance, finding the best mapping between n factories and m
retail stores given the cost of shipment, or the best way to turn
piles of dirt into another minimizing the work defined by the
amount of dirt moved times the distance by which it is moved.
The last example actually motivated the definition of a dis-
tance between two multi-dimensional distributions called
the Earth Mover’s Distance (EMD) [22] which has been
found to be the discrete version of the first Wasserstein dis-
tanceW1(µ, ν) := infγ∈Γ(µ,ν)

∫
M×M d(x, y)dγ(x, y) whose

definition is strongly related to the optimal transport in its
Kantorovich’s formulation inf{

∫
X×Y c(x, y)dγ(x, y) | γ ∈

Γ(µ, ν)}. Since copulas encode all the dependencies with
their uniform marginals, we leverage them to quantify intra-
dependence similarity between two d-variate random vari-
ables, i.e. how similar the dependence between their d coor-
dinates is.

Definition. Earth Mover’s Distance between two copulas.
Let Ũ1, Ũ2 ∈ [0, 1]d be the empirical copula transforms

of data X1, X2 ∈ Rd×T . We estimate the two empirical cop-
ula densities using histograms h1 and h2 that are converted
into signatures s1 = {(pi, wpi)ni=1} and s2 = {(qi, wqi)ni=1},
where pi, qi ∈ [0, 1]d are the central positions of bins in h1,
h2 respectively, and wpi , wqi are equal to the correspond-
ing bin frequencies. We define the intra-dependence distance
Dintra(X1, X2) := EMD(s1, s2), where [22]

EMD(s1, s2) := min
f

∑
1≤i,j≤n

‖pi − qj‖fij

subject to fij ≥ 0, 1 ≤ i, j ≤ n,
n∑
j=1

fij ≤ wpi , 1 ≤ i ≤ n,

n∑
i=1

fij ≤ wqj , 1 ≤ j ≤ n,

n∑
i=1

n∑
j=1

fij = 1.

(1)

From a practical point of view, this distance is robust to
the binning process (i.e. small misalignements of correspond-
ing frequencies yield to a slightly larger distance) unlike the
standard bin-by-bin distances (small misalignements yield to
a much larger distance) such as Kullback-Leibler divergence
for instance. However, its main drawback is the computa-
tional complexity. Finding the optimal transport between the
n Diracs is an instance of the assignement problem. This fun-
damental combinatorial optimization problem is equivalent to
the problem of finding a minimum weight matching in a com-
plete weighted bipartite graph Kn,n which can be solved by
the Hungarian algorithm in O(n3).

In Fig. 2, we display three bivariate empirical copulas
computed on real data (these copulas encode the depen-
dence between two maturities of the credit default swaps
for three different entities). We can notice strong positive
dependence (expressed by the diagonals), yet these copulas
exhibit distinct dependence patterns which may not be taken
into account by correlation coefficients (cf. the tutorial at
www.datagrapple.com/Tech for an application of this
methodology to credit default swaps time series).

4. CLUSTERING INTER-DEPENDENCE

We refer to the dependence between two d-variate time se-
ries as inter-dependence. In this section, we present our inter-
dependence measure and compare it in Fig. 4 with the most
popular coefficients in the literature (ACE, dCor, MIC, RDC).

Let ZT = (XT
1 , . . . , X

T
d , Y

T
1 , . . . , Y

T
d ) ∈ R2d×T be

T stacked observations from the random vectors X =
(X1, . . . , Xd) and Y = (Y1, . . . , Yd). Informally, in or-
der to estimate dependence between X and Y , we use the
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Fig. 2. Optimal Copula Transport for measuring intra-
dependence similarity of two MTS; C1, C2, C3 are empirical
copulas of data X1, X2, X3 ∈ R2×T respectively. According
to the EMD, the dependence between the two coordinates of
X1 is much similar to those of X2 than those of X3.

relative position of the empirical copula C̃ built from data
ZT on the shortest path starting from the independence cop-
ula Cind, ending to one of the copulas {Ci} encoding the
target dependencies, and passing through C̃. This idea is
depicted in Fig. 3 and benchmarked in Fig. 4.

Definition. Target Dependencies Coefficient using Trans-
port to Dependence Copulas. The Target Dependencies Coef-
ficient using Transport to Dependence Copulas (TDC) is de-
fined as

TDC(XT , Y T ) :=
EMD(Cind, C̃)

EMD(Cind, C̃) + mini EMD(C̃, Ci)
.

For C̃ = Cind, TDC = 0, for C̃ ∈ {Ci}, TDC = 1, otherwise
TDC quantifies the relative nearness to independence or to
the specified dependencies. Bonus: practitioners can discover
which specified dependence is “activated”, i.e. which of their
hypotheses about the dependence between X and Y seems
the most likely (qualitative) and how strong (quantitative).

5. DISCUSSION

The proposed methodology presents several benefits: non-
parametric, robust and deterministic (optimal transport), ac-
curate and generic representation of dependence (empirical
copulas). Yet, it has also some scalability drawbacks: (i) in
dimension, non-parametric estimations of density suffer from
the curse of dimensionality (ii) in time, EMD is costly to com-
pute (but, there exist methods for speeding up computations
[25]). To alleviate drawback (i), parametric methods may be
a solution, we consider optimal copula transport in statistical
manifolds for further research.

Fig. 3. Optimal Copula Transport for estimating dependence
between random variables; Dependence can be seen as the
relative distance between the independence copula and one
or more target dependence copulas. In this picture, the tar-
get dependencies are “perfect dependence” and “perfect anti-
dependence”. The empirical copula (Data Copula) was built
from positively correlated Gaussians, and thus is nearer to
the “perfect dependence” copula (top right corner) than to the
“perfect anti-dependence” copula (bottom left corner).
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Fig. 4. Experiments based on [11] and [7]; Dependence es-
timators power as a function of the noise for several deter-
ministic patterns + noise. Their power is the percentage of
times that they are able to distinguish between dependent and
independent samples. TDC (dark blue curves) can deal with
complex dependence patterns in presence of noise if they are
specified in its targets.

2382



6. REFERENCES

[1] T Warren Liao, “Clustering of time series data a sur-
vey,” Pattern recognition, vol. 38, no. 11, pp. 1857–
1874, 2005.

[2] Robert H Shumway, “Time-frequency clustering and
discriminant analysis,” Statistics & probability letters,
vol. 63, no. 3, pp. 307–314, 2003.

[3] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano
Lonardi, “Experiencing SAX: a novel symbolic repre-
sentation of time series,” Data Mining and knowledge
discovery, vol. 15, no. 2, pp. 107–144, 2007.

[4] Konstantinos Kalpakis, Dhiral Gada, and Vasundhara
Puttagunta, “Distance measures for effective clustering
of ARIMA time-series,” in Data Mining, 2001. ICDM
2001, Proceedings IEEE International Conference on.
IEEE, 2001, pp. 273–280.

[5] Philippe Donnat, Gautier Marti, and Philippe Very, “To-
ward a generic representation of random variables for
machine learning,” Pattern Recognition Letters, vol. 70,
pp. 24–31, 2016.
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[18] Paul Deheuvels, “La fonction de dépendance em-
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