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ABSTRACT

Recently, sparse representation based classification has been widely
used in pattern recognition. Most of existing methods exploit the re-
covered representation coefficients to reconstruct the inputs, and the
classwise reconstruction errors are used to identify the class of the
sample based on the subspace assumption. Different from the recon-
struction pipeline, an assignment framework is built on the represen-
tation coefficients in this paper. More specifically, we treat the rep-
resentation coefficients as soft assignments of the class labels, and
the distribution of the assignments reveals the class of the sample.
Under this framework, we can easily generalize it to multi-sample
and/or multi-feature scenarios, where multiple assignment instances
can be directly fused to stabilize the distribution estimation. As such,
the estimated distribution pattern can be used as a new discrimi-
native feature for classification. Experiments on the classification
of hyperspectral image demonstrate that the generalized assignment
framework can effectively combine neighboring samples and mul-
tiple features for collaborative classification, which could achieve
significantly better results than several state-of-the-arts.

Index Terms— Hyperspectral image classification, sparse rep-
resentation, soft assignments, multi-sample, multi-feature

1. INTRODUCTION

Hyperspectral imaging, which is capable of capturing hundreds of
continuous narrow spectral bands spanning the visible to infrared
spectrum, has found wide applications in agriculture, environment,
military, and many other fields. As a basic task of many applications,
hyperspectral image (HSI) classification has become a hot research
issue in recent years. Despite the plenty of spectral bands, it is usu-
ally hard or expensive to collect enough labeled samples, making it
a great challenge to realize high-accuracy classification with limited
training samples.

Recently, sparse representation (SR) has drawn great attention in
machine learning and pattern recognition, and achieved impressive
performance in many classification problems [1, 2, 3]. Sparse rep-
resentation based classification (SRC) assumes that samples of the
same class lie in a class-specific low-dimensional subspace, and that
a test sample can be expressed as a sparse linear combination of all
the training samples [1]. SRC has also been introduced to HSI clas-
sification community, and achieved promising results [4, 5, 6, 7, 8].

Nevertheless, most of existing SR-based methods take the class-
wise reconstruction errors induced by the recovered representation
coefficients as the classification criterion. Unfortunately, SRC suf-
fers from the instability of the recovered coefficients due to the high
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coherence of training samples in real applications [9, 10]. The insta-
bility implies that the recovered coefficients might differ significant-
ly between similar input features and that the nonzero entries might
spread across multiple classes, thus weakening the discriminability.
Kinds of strategies have been proposed in the literature to allevi-
ate such a weakness. A natural way is to combine multiple similar
samples to be represented jointly, such as joint SRC [4], Laplacian
regularized SRC [7], SRC in tangent space [11], etc. These remedies
could improve the stability of the model to some extent, but at the
expense of the complexity of the algorithms.

In our previous work, we have found that the SR coefficients
follow a class-specific distribution, although they manifest instabil-
ity in a single representation [12]. Moreover, SR coefficients can
also be viewed as some measure of the similarities between the dic-
tionary atoms and the test sample to be represented [13, 14], where
larger coefficient indicates higher similarity. Intuitively, the more
similar the test sample and a dictionary atom, the more likely they
belong to the same class. Therefore, we can treat the SR coeffi-
cients as soft assignments of the test sample belonging to the classes
of the corresponding atoms. As such, SR actually plays the role of
automatic atom selection and similarity measure. The benefits of
such a treatment are as follows. First, when multiple samples of
the same class are available, their assignments can be directly fused
by accumulation. Moreover, the assignments of multiple features
of each sample can also be accumulated if the dictionary atoms of
each feature follow the same arrangement. Then multi-sample and
multi-feature classification can be unified into the same framework.
Second, as SR coefficients follow a class-specific distribution inher-
ently, multi-sample and multi-feature collaborative classification can
be performed automatically through assignment accumulation. Last
but not least, assignment accumulation can also make the model ro-
bust to few outliers from a statistic perspective.

In summary, the soft assignment framework takes no effort to
stabilize the representation model itself as what conventional meth-
ods do, but exploits the class-specific distribution and the similarity
measure property of SR coefficients in a statistic way. If the in-
stances participating the statistic are sufficient, the stability can also
be guaranteed. Experiments on the classification of HSIs demon-
strate that soft assignment based classification significantly out-
performs several state-of-the-arts, and could achieve high-accuracy
classification with very limited training samples.

2. GENERALIZED SOFT ASSIGNMENTS

SRC is based on the observation that high-dimensional input features
usually lie in a class-specific low-dimensional subspace in many
real-world problems. A test sample can be sufficiently reconstructed
by the training samples of the same class, which is naturally sparse
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Fig. 1. Illustration of soft assignment framework. (a) Class label assignments of sparse representation. (b) Accumulated assignments of
multiple samples. (c) Accumulated assignments of multiple features. (d) Accumulated assignments of both multiple samples and multiple
features. For visualization purposes, only two kinds of features are illustrated here.

under the dictionary consisting of training samples from all classes.
Formally, a structured dictionary D = [D1, D2, · · · , DC ] ∈ Rd×N

is constructed by the training samples from C classes, where Di ∈
Rd×Ni is the subdictionary consisting of training samples from class
i (i = 1, 2, · · · , C) and N =

∑C
i=1Ni is the total number of train-

ing samples. A test sample x ∈ Rd can be represented as a sparse
linear combination of all the training samples as

α̂ = argmin
α

1

2
‖x−Dα‖22 + λ‖α‖1 (1)

where ‖ · ‖1 is the L1-norm encouraging the sparseness of represen-
tation coefficients. The first term in (1) is data fidelity and the second
is sparsity penalty, and the parameter λ balances the two terms.

According to the subspace assumption, the nonzero entries of
the recovered representation coefficients would mainly concentrate
on the subdictionary of the true class [1], meanwhile the amplitudes
indicate the similarities between the test sample and the correspond-
ing dictionary atoms [13, 14]. It is reasonable to assume that the
higher the similarity, the more likely the test sample belongs to the
class of the corresponding atom. Thus, we can treat the recovered
coefficients as soft assignments of the test sample having the class
labels of the corresponding atoms, as illustrated in Fig. 1(a). With
this treatment, we can easily generalize it to multi-sample, multi-
feature and both multi-sample and multi-feature scenarios.

2.1. Generalized soft assignments with multiple samples

If the SR coefficients are treated as soft assignments about the class
of a test sample, when multiple samples from the same class are
available, their accumulated assignments would represent the overall
distribution of the class labels. For example in HSI where spatially
neighboring pixels usually belong to the same class, the accumulated
assignments actually reflect the total likelihood about their common
category. Specifically, given a set of n input samples from the same
class, X = {x1,x2, · · · ,xn}, whose associated SR coefficients
are A = {α1,α2, · · · ,αn} respectively, their accumulated assign-
ments can be defined as

hj =

n∑
i=1

|αij | , j = 1, 2, · · · , N

h(X ) = 1

T
· [h1, h2, · · · , hN ]T ∈ RN

(2)

where αij is the jth entry of the coefficient vector αi ∈ RN , and
T =

∑N
i=1 hi is a constant to normalize the summation to be 1.

Perceptually, each sample xi can be viewed as a random sam-
pling from the class it belongs to. As the SR coefficients follow a
class-specific distribution [12], an individual assignment would al-
so be a random instance of the class-specific overall assignments.

When the cardinality of the sample set is large enough, the accu-
mulated assignments defined in (2) would be a good estimate of the
class distribution statistically, as illustrated in Fig. 1(b). Another
advantage is that accumulated assignments would not be impacted
much by few outliers, and thus the robustness can be guaranteed.

2.2. Generalized soft assignments with multiple features

Similarly, we can generalize the soft assignment framework to multi-
feature scenario. Since different features might provide complemen-
tary information among each other, multi-feature classification has
drawn great attention in HSI classification recently [15, 16]. When
K kinds of features are extracted, we can construct a dictionary set
{D1, D2, · · · , DK} , where Dk is the dictionary corresponding to
the kth feature and the dictionary atoms are all arranged in the same
order. Intuitively, the SR coefficients of different features of a sam-
ple would follow a similar distribution. When treated as soft assign-
ments of class labels, the accumulation of these coefficients would
be the total assignments of the sample. Formally, for a test sample x
with K features F(x) = {x1,x2, · · · ,xK}, we first obtain the SR
coefficients of each feature by

α̂k = argmin
αk

1

2
‖xk −Dkαk‖22 + λ‖αk‖1 (3)

Then, the accumulated assignments of multiple features can be
defined as

hj =

K∑
k=1

wk|αk
j | , j = 1, 2, · · · , N

h(F) = 1

T
· [h1, h2, · · · , hN ]T ∈ RN

(4)

wherewk is the weight of the kth feature. The introduction of feature
weights provides the model more flexibility, where we can empha-
size more on features with better discriminability. The weights might
be provided in priori or learned adaptively. In this paper, we adopt
the sparsity concentration index (SCI) [1] as the adaptive weights

SCI(αk) =
C ·maxi ‖δi(αk)‖1/‖αk‖1 − 1

C − 1
(5)

where δi(αk) indicates the entries associated with the ith class. The
larger the value of SCI, the more the nonzero entries concentrate on a
specific subdictionary. Features with higher concentration are more
reliable, and hence larger weights should be assigned.

Different from the multi-sample scenario which exploits the di-
versity of multiple samples, multi-feature scenario tries to exploit
the complementarity of different features. With the assumption that
the SR coefficients of different features follow a similar distribution,
multi-feature assignment accumulation is also try to estimate their
shared distribution pattern in statistic (see Fig. 1(c)).
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2.3. Generalized soft assignments with both multiple samples
and multiple features

Following the same idea, we can further generalize the soft assign-
ment framework to both multi-sample and multi-feature scenario.
It can be observed that whatever multi-sample or multi-feature, the
process of the assignment accumulation is actually a distribution es-
timation. With this common objective in mind, we can combine
multi-sample and multi-feature to boost the estimation. Specifically,
given a sample set X = {x1,x2, · · · ,xn} and the associated mul-
tiple features of each sample F(xi) = {x1

i ,x
2
i , · · · ,xK

i }, we first
obtain the SR coefficients αk

i of xk
i by solving (3), then the accu-

mulated assignments of both multiple samples and multiple features
can be defined as

hj =

K∑
k=1

wk
n∑

i=1

|αk
ij | , j = 1, 2, · · · , N

h(X ,F) = 1

T
· [h1, h2, · · · , hN ]T ∈ RN

(6)

where wk is the weight of the kth feature too. Here, we define wk

similarly to (5) but with αk replaced by hk calculated by (2), as we
believe that the feature with more concentrated distribution is more
discriminant, and thus we should assign larger weight.

Compared to multi-sample or multi-feature scenario, their com-
bination increases the number of instances participating in the esti-
mation of the assignment distribution, which could enhance the ro-
bustness and accuracy in turn, as illustrated in Fig. 1(d). In essence,
the combination jointly exploits the diversity of multiple samples
and the complementarity of multiple features.

3. HSI CLASSIFICATION USING THE GENERALIZED
ASSIGNMENT FEATURE

According to the homogeneity of land covers’ distribution, spatially
neighboring pixels usually come from the same class and hence they
actually form a set of similar samples. Besides the spectral feature,
kinds of spatial features have been proposed in the literature to in-
clude the contextual information in HSI classification [17, 18, 19]. In
principle, any reasonable spectral-spatial features can be applied to
the proposed framework. In this paper, we employ the widely used
spatial mean of spectral features, the extended morphological pro-
files (EMPs) [18] and the extended multi-attribute profiles (EMAPs)
[20] to conduct the multi-feature classification. The spatial neigh-
bors and/or multiple features of each pixel meet the requirements
of multi-sample and/or multi-feature classification and the proposed
framework can be utilized.

It can be noted that the generalized soft assignments can be
viewed as a kind of histogram reflecting the assignment distribu-
tion. A simple way to determine the class label is to count the total
assignments associated with each subdictionary, but it only exploit-
s the local information of the distribution and ignores the overall
pattern. Considering that support vector machine (SVM) with his-
togram intersection kernel (HIK) is very effective in the classifica-
tion of histogram-type feature [21], we use the assignment result as
a new input feature to the HIK-based SVM for classification. The
histogram intersection between two histograms is defined as

K(h(xi),h(xj)) =

N∑
k=1

min(hk(xi),hk(xj)) (7)

where h(xi) is the multi-sample and/or multi-feature assignment
feature of sample xi, and N is the number of histogram entries.

4. EXPERIMENTAL RESULTS

Two popular benchmarks in HSI classification are used to validate
the effectiveness of the proposed method. The first is the Indian
Pines data set, which is of size 145 × 145 pixels with 200 spectral
bands. There are 16 ground-truth classes available, with 10366 la-
beled samples in total. The second is the University of Pavia data
set, which is of size 610× 340 pixels with 103 spectral bands. Nine
ground-truth classes, with 42776 labeled samples in total, are avail-
able for this scene. Both of the data sets are available online. 1

In the experiments, part of the labeled samples are randomly
selected for training, and the rest are for testing. Overall accura-
cy (OA), average accuracy (AA) and the κ coefficient measure are
used to evaluate the classification performance. In order to avoid any
sampling bias, all of the experiments are repeated ten times with d-
ifferent training sets, and the mean results are reported. In the multi-
sample classification, the neighborhood is simply set as a fixed win-
dow of size 7×7 pixels around each test sample. In the multi-feature
classification, the spatial mean of spectral features is extracted by the
3 × 3 average filtering, the EMPs and EMAPs are extracted on the
first five PCA components. The structural elements of EMPs are
disks with radius ranging from 1 to 10 pixels. The EMAPs are built
on the area and standard deviation attributes. The threshold values of
the area attributes are chosen in the range {50,500} with a step size
of 50, and the deviation attributes are chosen in the range {2.5%,
20%} of the mean of the component with a step size of 2.5%, as
suggested in [17]. For simplicity, the regularization parameter λ is
set to the same for all the features, and we find that λ = 10−3 for
the Indian Pines dataset and λ = 10−4 for the University of Pavia
dataset could achieve satisfactory results.

4.1. Effectiveness validation

In this experiment, we investigate the effectiveness of the proposed
assignment feature. The multi-sample, multi-feature and both multi-
sample and multi-feature assignment feature based classifications
are denoted as MS, MF, and MSMF, respectively. Fig. 2(a) shows
the classification results of each method on the Indian Pines data
set with different percent of training samples per class. Under the
soft assignment framework, the diverse samples involved in multi-
sample classification and the complementary features involved in
multi-feature classification are all treated as instances to estimate the
assignment distribution. As one can see, both MS and MF achieve
significantly better results than the single spectral based SRC. In ad-
dition, we know that the more instances involved in the statistic, the
more accurate and stable the estimation will be. Comparing MS
with MF, there are 49 (7×7) instances for each sample in MS, while
there are only 4 instances in MF. Consequently, MS could get better
estimate than MF, thus obtaining better results. Since MSMF inher-
its the merits of both MF and MS, more accurate estimation can be
guaranteed and thus the best performance is achieved.

Fig. 2(b) shows the estimated assignment distribution of a test
sample under different scenarios. One can note that the coefficients
of SRC spread widely and are not dominant on the block of the true
class due to the instability of SR. In contrast, the assignments of MS
concentrate more on the right block, and large assignments of MF are
located on the desired block too. The assignments of MSMF appear
purer than MS, concentrating more on the right block. Therefore,
assignment feature based classification could correctly classify the
samples that might be misclassified by SRC.

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes.
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Fig. 2. Results on the Indian Pines data set. (a) Classification accu-
racy versus the percentage of training samples per class. (b) Details
of the assignments of a test sample, using 3% training samples. The
red dashed box indicates the block corresponding to the true class.

4.2. Performance comparison

In order to demonstrate the superiority of the proposed method in H-
SI classification, we compare it with several conventional approach-
es, including SRC, SVM, contextual SVM (CSVM) [22], Laplacian
regularized SRC (LS) [7], KOMPCK [8], and JCRCMTL [16]. SR-
C and SVM are single spectral based methods. LS and CSVM are
multi-sample based methods. KOMPCK and JCRCMTL are multi-
feature and both multi-sample and multi-feature based methods, re-
spectively. For fair comparisons, the neighborhood in multi-sample
classification and the extracted features in multi-feature classifica-
tion are all the same among the related methods. Best parameters
specific to individual methods are obtained by cross-validation.

Table 1 presents the classification results of each method on the
Indian Pines data set, with 3% of labeled samples used for training.
It can be noted that multi-sample classifications achieve much better
results than the baselines on single sample (e.g., CSVM vs. SVM,
LS vs. SRC). It is because multi-sample classification exploits con-
textual information to strengthen the power of the classifier. Multi-
feature classification enhances the distinguishability of samples by
employing more discriminative features. Evidently, the combination
of multi-sample and multi-feature could further improve the classi-
fication performance, as one can see from JCRCMTL. While, the
proposed MSMF exploits multi-sample and multi-feature jointly to
estimate a stable assignment distribution, and further use the distri-
bution pattern as a higher-level discriminative feature for classifica-
tion. Compared to JCRCMTL, MSMF is not only much simpler in
the model complexity, but also obtains better results for most of the
classes as well as the overall performance.

In the sequel, we examine the classification performance of vari-
ous algorithms with different number of training samples. For the U-
niversity of Pavia data set, we randomly select 5-40 labeled samples
per class for training and the rest are for testing. The overall accura-
cies of all the methods in comparison are shown in Fig. 3(a). It can
be noted that the proposed MSMF can consistently achieve notice-
ably better performance than the other counterparts. Especially, even
when only 10 labeled samples per class are available, the proposed
MSMF could achieve 94.39% overall accuracy, significantly better
than the second best 91.25% of JCRCMTL. It demonstrates again
that the proposed soft assignment framework can effectively com-
bine multiple samples and multiple features to realize high-accuracy
classification, even with very limited labeled samples.

In addition, it should be noted that since soft assignment feature
is a statistic based feature, a small number of outliers would not im-
pact seriously as long as their proportion is low. Fig. 3(b) shows

Table 1. Classification accuracy (%) for the Indian Pines data set
using 3% training samples per class
No SRC SVM CSVM LS KOMPCK JCRCMTL MSMF
1 65.69 69.61 68.04 70.39 86.86 93.14 91.76
2 67.11 75.87 90.37 78.45 91.98 91.28 95.60
3 57.82 65.87 91.00 67.87 91.65 91.76 93.91
4 51.73 50.49 85.31 72.26 75.66 96.28 91.81
5 81.47 88.67 89.11 81.24 87.68 87.18 89.59
6 95.58 92.55 96.49 99.67 97.17 99.10 98.84
7 47.83 91.30 91.74 26.96 96.09 96.09 98.70
9 98.50 92.55 97.49 99.96 99.66 100 100
9 87.06 85.88 97.06 33.53 100 62.95 100

10 57.31 67.93 85.03 71.33 89.04 91.42 93.19
11 82.12 76.87 93.23 95.86 95.56 96.12 97.83
12 63.31 70.96 87.92 79.88 90.57 91.60 96.07
13 99.46 96.78 97.12 99.85 99.32 99.76 98.05
14 96.45 93.65 96.37 99.54 99.56 99.81 99.86
15 42.99 44.51 76.63 62.58 93.37 97.45 98.78
16 88.37 84.78 95.65 97.39 83.59 83.91 93.91
OA 76.34 77.90 91.53 86.13 93.68 94.76 96.54
AA 73.99 78.01 89.97 77.30 92.36 92.36 96.12
κ 72.84 74.80 90.35 84.04 92.79 94.03 96.06
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Fig. 3. Results on the University of Pavia data set. (a) Classification
accuracy versus the number of training samples per class. (b) Clas-
sification accuracy versus the width of the neighborhood window,
using 10 training samples per class.

the classification accuracies of MS and MSMF with the variation of
neighborhood window width. One can see that both of the methods
behave robustly to the size of the window in a wide range. So, the
window size is not crucial as long as it is in a reasonable range.

5. CONCLUSION

In this paper, we have proposed a novel soft assignment framework
to combine multiple samples and multiple features in classification.
Under this framework, multi-sample classification and multi-feature
classification can be unified and easily fused. The accumulated as-
signments of multiple samples and/or multiple features can be treat-
ed as a high-level discriminative feature for classification. Exper-
iments on HSI classification have demonstrated that the proposed
method outperforms several state-of-the-art approaches, and could
realize high-accuracy classification with very limited training sam-
ples. Besides, the proposed soft assignment framework is also appli-
cable to other multi-sample and/or multi-feature classifications, such
as image set based face recognition. It is our future work to test its
effectiveness in other applications.
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