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ABSTRACT
The typical classification rule for kernel sparse representation-
based classifier (KSRC) is the reconstruction error minimiza-
tion rule. Its computational complexity mainly depends on
both the dimensionality of a subspace and the number of
training samples. This paper presents an alternative classi-
fication rule, called reconstruction coefficient energy max-
imization, for KSRC and applies it to target recognition in
synthetic aperture radar (SAR) images. The computational
complexity of this rule is related to only the number of train-
ing samples, which is smaller than that of the reconstruction
error minimization rule. Experimental results on the Moving
and Stationary Target Acquisition and Recognition (MSTAR)
public database indicate that KSRC is very promising in SAR
image target recognition., and the reconstruction coefficien-
t energy maximization rule outperforms the reconstruction
error minimization rule in KSRC.

Index Terms— Sparse representation, kernel methods,
reconstruction error minimization, synthetic aperture radar
(SAR) image target recognition, Moving and Stationary Tar-
get Acquisition and Recognition

1. INTRODUCTION

Ssynthetic aperture radar (SAR) can generate all weather, 24-
hour a day, high-resolution images with abundant information
of amplitude, phase and polarization [1]. For military defense
and civil applications, there are two interesting topics, or SAR
image target recognition and SAR image classification. The
goal of SAR image target recognition is to detect targets in
SAR images each of which contain only a target [2,3]. While
SAR image classification is to separate different targets in an
SAR image [4–6]. Here, we focus on the topic of target recog-
nition in SAR images.

Many algorithms have been proposed for SAR image tar-
get recognition. These algorithms are divided into two group-
s, or template-based algorithms [3, 7] and feature-based clas-

This work was supported in part by the National Natural Science Foun-
dation of China under Grant No. 61373093, by the Natural Science Foun-
dation of Jiangsu Province of China under Grant No. BK20140008, by the
Natural Science Foundation of the Jiangsu Higher Education Institutions of
China under Grant No.13KJA520001, by the Qing Lan Project and by the
Soochow Scholar Project.

sification algorithms [8–10]. Generally, feature-based classi-
fication algorithms can provide better generalization perfor-
mance than template-based algorithms.

Recently, sparse representation-based classifier (SRC)
and its kernel version (KSRC) were proposed in [11] and [12],
respectively. Since SRC and its variants have good perfor-
mance on high-dimensional face data, they have attracted
substantial attention in many applications including target
recognition in SAR images. In [13], a variant of SRC was
proposed for automatic target classification in SAR images
and obtained good performance. In [14], sparse representa-
tion is used to describe local features in sub-regions which are
generated by using a spatial pyramid approach. To deal with
multi-view automatic target recognition, a joint sparse repre-
sentation method was proposed in [15]. It is known that pose
estimation from SAR images itself is a very challenging prob-
lem. However, there is no need for any pose estimation when
applying sparse representation to target recognition [13, 15],
which is a quiet charming merit.

There are two important issues in SRC or KSRC. One is-
sue is sparse representation methods, or how to sparsely rep-
resent a test sample using training samples. The other issue is
about classification rules, or how to assign an estimated label
to the test sample. At present, a lot of research focus on sparse
representation methods [13, 15]. A reconstruction error min-
imization (REM) rule is adopted in SRC [11], which is the
general rule in sparse representation methods including KSR-
C. We cannot ensure that the REM rule is the optimal one.
In addition, the computational complexity of the REM rule is
about O(nd), where d is the dimensionality of a subspace and
n is the number of training samples.

This paper proposes a reconstruction coefficient energy
maximization (RCEM) rule for KSRC and applies it to target
recognition in SAR images. The reconstruction coefficien-
t energy maximization rule is inspired by the original idea
behind SRC. Ideally, a valid test sample can be sufficiently
represented using only the training samples of the same sub-
ject [11]. In other words, the reconstruction coefficients cor-
responding to the other classes are zero. Thus, we could di-
rectly use reconstruction coefficients to classify a test sample
instead of using the reconstruction error minimization rule.
Moreover, the reconstruction coefficient energy maximization
rule has a computational complexity of O(n) which is smaller
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than the REM rule.
The contribution here is to introduce KSRC to SAR im-

age target recognition and propose an alternative classifica-
tion rule for KSRC. The rest of this paper is arranged as fol-
lows. Section 2 introduces KSRC and presents the novel clas-
sification rule for KSRC. Section 3 shows experimental re-
sults and Section 4 concludes this paper.

2. RECONSTRUCTION COEFFICIENT ENERGY
MAXIMIZATION FOR KSRC

KSRC is a nonlinear extension of SRC by introducing kernel
tricks. In [12], KSRC shows its good performance on the
application of face recognition. As far as we know, KSRC has
been not applied to SAR image target recognition. The goal of
this paper is to apply KSRC to SAR image target recognition.
In the following, we first introduce KSRC and then present
the alternative classification rule for KSRC.

2.1. Kernel sparse representation-based classifier

2.1.1. Kernel sparse representation

Consider a c-class classification task. Let the training set be
{xi, yi}ni=1, where n is the total number of training samples,
xi ∈ X ⊂ Rm, X is an input space with the dimensionali-
ty of m, and yi ∈ {1, 2, · · · , c}. In KSRC, the data are mapped
from the input spaceX into a high-dimensional (possibly infi-
nite dimensional) kernel feature space F by using a nonlinear
mapping function Φ.

In F , we can linearly represent the image of a test sample
in terms of the images of all training samples. Namely,

Φ(x) =
n∑

i=1

αiΦ(xi) = Φα (1)

where Φ(x) is the image of x in F , α = [α1, α2, · · · , αn]T is
the coefficient vector, αi are the coefficients corresponding to
the images Φ(xi) of training samples, and Φ is the training
sample matrix in F .

It is necessary to reduce dimensionality of F since the
space F has a very high or possibly infinite dimensionality.
Let P be a transformation matrix. The both sides on (1) are
multiplied by P, and following equality results.

PTΦ(x) = PTΦα (2)

We introduce a pseudo-transformation matrix B and let P =
ΦB. Thus, we have

BT k(·, x) = BT Kα (3)

where k(·, x) = [k(x1, x), · · · , k(xn, x)]T = ΦTΦ(x), K =

ΦTΦ ∈ Rn×n is the kernel Gram matrix which is symmetric
and positive semi-definite, and Ki j = k(xi, x j).

Finally, kernel sparse representation can be cast into the
following optimization problem:

min
α
∥α∥1 (4)

subject to ∥BT k(·, x) − BT Kα∥2 ≤ ε
where ∥ · ∥1 and ∥ · ∥2 respectively denote the ℓ1-norm and
ℓ2-norm, and ε is a small positive constant, say 10−3.

2.1.2. Classification rule

The convex problem (4) can be efficiently solved [12,16]. The
solution to (4) gives the reconstruction coefficient vector α.
For a given test sample x, we assign a label ŷ to it by using
the reconstruction error minimization rule. Namely,

ŷ = arg min
i=1,··· ,c

ri(x) = ∥BT k(·, x) − BT Kδi∥2 (5)

where ri(x) is the reconstruction error generated from the i-th
class, and

δi = [δi(α1), δi(α2), · · · , δi(αn)]T (6)

where the characteristic function δi can pick up the coeffi-
cients corresponding to the i-th class, or

δi(α j) =
{
α j, i f y j = i
0, otherwise (7)

2.2. Reconstruction coefficient energy maximization

The reconstruction error minimization rule is a classical clas-
sification one in sparse representation methods. However, its
optimality cannot be ensured. Moreover, it has a computa-
tional complexity of O(nd) when ignoring the computation
between B ∈ Rd×n and K ∈ Rn×n, where d is the dimensional-
ity of the subspace.

Here, we propose an alternative classification rule, or re-
construction coefficient energy maximization rule. This rule
is inspired by the original idea behind SRC. Ideally, a valid
test sample can be sufficiently represented using only the
training samples of the same subject [11]. In other words, the
reconstruction coefficients corresponding to the other classes
are zero. Thus, we could directly use reconstruction coeffi-
cients to classify a test sample. The reconstruction coefficient
energy maximization rule can assign a label ŷ to a test sample
x in terms of the following expression.

ŷ = arg max
i=1,··· ,c

ei(x) = ∥δi∥22 (8)

where ei(x) is the reconstruction coefficient energy of the i-th
class on x.

By (8), the reconstruction coefficient energy maximiza-
tion rule is related to only reconstruction coefficients. Its com-
putational complexity is about O(n), which is independent of
the dimensionality of the subspace. Obviously, the compu-
tational complexity of the reconstruction coefficient energy
maximization rule is smaller than that of the reconstruction
error minimization rule.
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3. EXPERIMENTAL RESULTS

Usually, the Moving and Stationary Target Acquisition and
Recognition (MSTAR) public database [17] is used to vali-
date the performance of algorithms. Three targets considered
are the T72 tank, the BTR70 personnel carrier and the BM-
P2 tank. This database contains the log-intensity images of
them collected at 15-degree and 17-degree depression angles,
respectively. We take the SAR images from the 17-degree set
as the training set, and those from the 15-degree set as the
testing set. The information about training and testing sets
are shown in Table 1. SAR images in the MSTAR database
are originally 128×128. We down-sample them by a factor of
two in each dimension to 64× 64. Therefore, the original fea-
tures of each SAR image is obtained by stacking its columns
and the number of feature is 4096.

We compare our scheme (KSRC with RCEM) with K-
SRC with REM and SRC. The quadratically constrained ℓ1-
minimization problem for both KSRC and SRC is solved by
using ℓ1-MAGIC software package [18]. In KSRC and SRC,
let ε = 0.001. The RBF kernel k(xi, x j) = exp(−γ∥xi − x j∥22)
is used in KSRC, where the parameter γ > 0 is the kernel
parameter. For SRC, 4096 is still a large feature number,
so we perform random projection to reduce dimensionality.
For KSRC, the kernel Gram matrix depends on the number of
training samples, here 1622. For fairness, random projection
is also performed in KSRC.

All numerical experiments are performed on the personal
computer with a 2.93GHz Inter(R) Core(T)2 Duo CPU and
2G bytes of memory. This computer runs on Windows XP,
with MATLAB 7.01 and VC++ 6.0 compiler installed.

Table 1. Information on training and testing sets from the
MSATR database

Target Training (17-degree) Testing (15-degree)
BMP2(sn−c9563) 233 194
BMP2(sn−c9566) 232 196

BMP2(sn−c21) 233 196
BTR70 233 196

T72(sn−132) 232 196
T72(sn−812) 231 195
T72(sn−S7) 228 191

SUM 1622 1364

3.1. Selection of kernel parameter

In this experiment, we consider the effect of the kernel param-
eter γ on KSRC with different classification rules. In [12], a
median value of 1/(∥xi−x∥2), i = 1, · · · , n is adopted, where x
being the mean of all training samples. Let σ be this median
value. We make a little change on this setting. Let γ = pσ
with p being a positive constant and selected from the set
{2−3, 2−2, · · · , 23}. Let d = 100 be the dimensionality of the

subspace. We perform 10 runs because of the use of random
projection and report the average results in Figure 1.
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Fig. 1. Performance of KSRC with different classification
rules under different kernel parameter views.

From Figure 1, we can see that KSRC with RCEM has
much better performance than KSRC with REM when 2−2 ≤
p ≤ 21. When p = 2−2, KSRC with REM gets its best av-
erage performance, or a test error of 8.98%. For KSRC with
RCEM, the best average performance (3.98%) is obtained at
p = 2−1. In the following experiments, the kernel parameter is
set to be 2−2σ and 2−1σ for KSRC-REM and KSRC-RCEM,
respectively.

3.2. Comparison of two classification rules

To compare KSRC-RCEM with KSRC-REM, we give a de-
tail illustration. First, a test sample is selected from the target
BMP2. Then, we use KSRC with two classification rules to
classify it, respectively. Figure 2(a) shows the reconstruction
coefficients obtained by KSRC, and Figure 2(b) gives selected
training samples corresponding to the first seven large coeffi-
cients. The reconstruction errors and coefficient energy values
of three targets for this test sample is shown in Table 2. The
best performance is bolded in this table. Obviously, this test
sample is misclassified by the REM rule. The RCEM rule can
correctly recognize it.

3.3. Effect of subspace dimensionality

To validate the effect of the subspace dimensionality d on the
performance of algorithms, we vary d from 20 to 120 at in-
tervals of 20. The other setting is the same as above. To
eliminate the randomicity induced by random projection, we
perform 10 trials for each d and report the average results in
Figure 3. Since RCEM is a general rule, it could also be ap-
plied to SRC. Here, we have four compared methods, SRC
with REM, SRC with RCEM, KSRC with REM, and KSRC
with RCEM.

Observation on Figure 3 indicates that the four algorithms
improve their performance when the subspace dimensionality
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Table 2. Results of two classification rules on the test sample
BMP2 BTR70 T72

Reconstruction error 0.6101 0.8070 0.5837
Reconstruction coefficient energy 0.1549 0.1248 0.1437
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Fig. 2. Kernel sparse representation based the test sample for
BMP2. (a) Reconstruction coefficients, and (b) Selected SAR
images from three targets.

is increasing. Moreover, we find that the novel rule is not effi-
cient when applying to SRC. But, this rule does work well in
KSRC. RCEM could get better performance than REM does
when d > 40. In addition, KSRC always has better perfor-
mance than SRC.

To see the CPU running time of four algorithms, Table 3
is given. The CPU running time means the running time for
all test samples, including the time of both solving convex
programming and classifying test samples. Comparison of
KSRC and SRC shows that KSRC has faster running time
when d ≥ 60. On two classification rules, RCEM is much
faster than REM in most cases, which supports the analysis
of computational complexity.
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Fig. 3. Performance of four methods under different subspace
dimensionality levels.

Table 3. CPU running time of four algorithms (sec.)
d SRC-REM SRC-RCEM KSRC-REM KSRC-RCEM
20 301.60 301.44 317.02 318.13
40 495.65 494.33 507.41 505.05
60 741.11 744.88 720.15 716.83
80 1037.46 1036.00 934.74 911.30
100 1386.36 1379.50 1105.40 1086.21
120 1648.69 1643.09 1217.57 1196.97

4. CONCLUSION

An alternative classification rule for KSRC is presented in
this paper and applied to SAR image target recognition. The
computational complexity of this rule is related to only the
number of training samples, which is smaller than that of the
reconstruction error minimization rule. Experimental results
on the MSTAR database are carried out. In experiments, ran-
dom projection is used to reduce the dimensionality of SAR
images to a certain range. Under the our experimental condi-
tions, the greater the dimensionality is, the lower the test error
is. KSRC is much better than SRC from the dimensionality
of 20 to 120. In addition, KSRC with RCEM outperforms
KSRC with REM on the classification performance. In both
SRC and KSRC, the RCEM rule has a faster running speed
than the REM rule in most cases.

In the current work, the kernel Gram matrix obtained from
training samples is directly taken as the dictionary of sparse
representation. Dictionary learning is quiet popular in sparse
representation. In the future, we plan to learn a compact dic-
tionary from the training data and apply it to SAR image tar-
get recognition.
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