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ABSTRACT

Genome-wide expression data consists of millions of measurements
towards large number of genes, and thus it is challenging for human
beings to directly analyze such large-scale data. Clustering provides
a more convenient way to analyze gene expression data because it
can subdivide raw data into comprehensive classes. However, the
number of probed genes is rather greater than the number of samples,
and this makes conventional clustering methods perform unsatisfac-
torily. In this paper, we propose a Gauss-Seidel based non-negative
matrix factorization (GSNMF) method to overcome such imbalance
deficiency between features and samples. In particular, GSNMF it-
eratively projects gene expression data onto the learned subspace
followed by adaptively updating the cluster centroids based on the
projected data. Since this data projection strategy significantly re-
duces the influence of imbalance between the number of samples
and the number of genes, GSNMF performs better than traditional
clustering methods in gene expression clustering. Since GSNMF up-
dates each factor matrix by solution of a linear system obtained by
the Gauss-Seidel method, it converges rapidly without neither com-
plex line search nor matrix inverse operators. Experimental results
on several cancer expression datasets confirm both efficiency and
effectiveness of GSNMF comparing with the representative NMF
methods and conventional clustering methods.

Index Terms— Gene expression clustering, non-negative ma-
trix factorization, Gauss-Seidel method.

1. INTRODUCTION

Microarray technologies have made it possible to monitor the ex-
pression levels of tens of thousands genes in parallel. A microarray
typically assesses a large number of DNA sequences, e.g., genes,
cDNA clones, or expressed sequence tags under various conditions
[1], e.g., different time series, collections of different tissue samples,
different states when stimuli is on and off, and several different stim-
ulus. As the progress of Genomic research, Human being’s ability of
gathering genome-wide expression data has far outstripped the abil-
ity of human beings to analyze the gene expression data. To meet
the requirement of analyzing genome-wide gene expression data,
life scientists usually distill gene expression data down to a more
comprehensible level by using clustering tools. In general, gene ex-
pression clustering subdivides a set of genes or samples into several
subsets so that genes in an identical subset have similar gene expres-
sion pattern and unearths similar bio-process, gene function, gene
regulation, and subtypes of cells [2].

Many clustering methods such as hierarchical clustering [3][4],
K-means [5][6], self-organizing maps (SOM, [7][8][9]), and non-
negative matrix factorization (NMF) [10][11][12][13] have been
applied to clustering gene expression data. Among them, NMF
[14][15] is one of the most powerful method and Brunet et al. [11]

shows that NMF has better performance than hierarchical cluster-
ing and SOM. Kim and Park [12] illustrated that sparse NMF can
achieve satisfactory clustering performance. Moreover, Zheng et
al. [13] employed independent component analysis (ICA) to select
a subset of genes to further improve the clustering performance of
NMF.

Although NMF have achieved great successes in gene expres-
sion clustering, it suffers from the deficiency of serious imbalance
between the number of genes and the number of samples. Generally
speaking, a typical microarray data contains thousands of genes on
each chip, and the number of collected samples is usually no more
than 100. Such imbalance deficiency [16] between large number of
genes and small number of samples makes most clustering methods
to perform unsatisfactorily, because it is difficult to choose primary
genes based only on few samples.

In this paper, we proposed a Gauss-Seidel based NMF (GSNMF)
to overcome this deficiency. Similar to traditional NMF, GSNMF
iteratively optimizes the cluster centroids and the coefficients until
convergence. Distinguished from traditional NMF, for optimizing
the coefficients, GSNMF projects the data onto a data-driven sub-
space, and updates the coefficient matrix with the solution of the
linear system obtained by using the Gauss-Seidel method. The
cluster centroids are optimized in the same way. Since the utilized
Gauss-Seidel method [17][18] needs neither complex line search
nor matrix inverse operator, GSNMF is more efficient than other
NMF solvers such as the popular multiplicative update rule (MUR)
[15] and projected gradient method [19]. In each iteration round,
GSNMF normalizes both factor matrices, and this normalization
makes the objective function of GSNMF to be upper-bounded by
that of NMF. Therefore, GSNMF can obtain a local minimum of
NMF and can overcome the deficiency of imbalance between the
number of genes and the number of samples. Experimental results
on several cancer expression datasets confirm both efficiency and
effectiveness of GSNMF in gene expression clustering.

2. GAUSS-SEIDEL BASED NON-NEGATIVE MATRIX
FACTORIZATION

Non-negative matrix factorization (NMF, [14]) learns two low-
dimensional non-negative matrices, i.e., W and H , to approximate
a high-dimensional non-negative matrix V , by minimizing the dis-
tance between V and WH , namely D(V |WH). NMF is usually
optimized by using multiplicative update rule (MUR) [15]. For
example, if the distance D is measured by the Frobenius norm, the
MUR is {

W ←W ⊗ V HT

WHHT

H ← H ⊗ WT V
WTWH

. (1)

However, MUR converges slowly because it is intrinsically a first-
order gradient based method [20], and cannot produce zero entries
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because zero entry does not change in the subsequent iterations. To
overcome these deficiencies, Guan et al. [21] proposed an NeNMF
method to alternating optimize both W and H by solving the non-
negative least squares (NNLS) problem with Nesterov’s method. Al-
though traditional NMF methods perform well on some tasks such
as image analysis and text mining, they cannot perform satisfacto-
rily on gene expression clustering because the number of genes is
usually much larger than the number of samples.

To remedy this problem, we propose a novel Gauss-Seidel based
NMF (GSNMF) method to alternating update each matrix by using
the Gauss-Seidel method. In particular, GSNMF transforms the sub-
problem of optimizing each matrix to solving a linear system. The
total procedure is summarized in Algorithm 1. In the second state-
ment, GSNMF updates both matrices by solving linear systems by
using the Gauss-Seidel method [17][18].

2.1. An Illustrative Example

Before introducing the GS algorithm, we present a simple example
to illustrate its procedure.

Problem: Given V =

[
8 9
9 6
1 1

]
and A =

[
1 2 2
2 1 2
2 2 2

]
,

find H =

[
h11 h12

h21 h22

h31 h32

]
such that V = AH .

Solution: Firstly, we randomly initialize the matrix H , e.g.,

H1 =

[
1 4
2 5
5 3

]
, and divide A into three components including

a upper triangular matrix, a lower triangular matrix, and a diagonal
matrix, i.e.,

A = U +D + UT

=

[
0 2 2
0 0 2
0 0 0

]
+

[
1 0 0
0 1 0
0 0 2

]
+

[
0 0 0
2 0 0
2 2 2

]
. (2)

By multiplying the equation (2) from the right hand by H , we could
equally obtain the following equation: AH = UH +DH +UTH .
By simple algebra, the equation V = AH is equivalent to V −
DH = UH + UTH . Given Hk, we can obtain Hk+1 by solving
the following linear system: V − UHk = DHk+1 + UTHk+1.

For example, from H1, we can obtain H2 as follows:[
8 9
9 6
1 1

]
−

[
0 2 2
0 0 2
0 0 0

][
1 4
2 5
5 3

]
=[

0 0 0
2 0 0
2 2 0

][
h11 h12

h21 h22

h31 h32

]
+

[
1 0 0
0 1 0
0 0 2

][
h11 h12

h21 h22

h31 h32

]
According to the Gauss-Seidel (GS) method [17][18], we can easily
compute H row by row. At the first step, we have [h11, h12] =
[−6,−7]. Continuous GS steps output [h21, h22] = [11, 14] and

[h31, h32] = [−9,−13]. Finally, we get H2 =

[ −6 −7
11 14
−9 −13

]
.

Note that different initializations of H result in different mini-
mizers, however, initialization does not seriously influence the min-
imum because the problem is convex.

2.2. The GS Algorithm

Inspired by the illustrative example, we employ the GS method to
optimize both factor matrices, i.e., W and H , in NMF. Take the op-
timization of H for example. It is well-known that the GS method

is designed to find the solution of model b ≈ Ax, where b is an
target vector of size n and A is an observation matrix, and the ob-
servation matrix A is constrained to be symmetric. The GS method
cannot be directly applied to solve the linear system V = WH as
W is unnecessarily to be symmetric. To remedy this problem, we
transform the subproblem of optimizing H to an approximate prob-
lem, i.e., WTV = WTWH . Since WTW is a symmetric matrix,
the GS method can be naturally applied to solve this linear system.
Similarly, when H is fixed, we could calculate W by the linear sys-
tem V HT = WHHT or V T = HHTWT . Here we focus on the
optimization of H as the optimization of W follows the same way.
For the convenience of derivatives, we denote WTV and WTW as
B and A, respectively.

Algorithm 1 Gauss-Seidel Based Non-negative Matrix Factorization

Input: V ∈ Rm×n
+ , 1 ≤ r ≤ min{m,n}.

Output: W ∈ Rm×r
+ , H ∈ Rr×n

+ .
1: Initialize: W 1 ≥ 0, H1 ≥ 0, k = 1.
2: Repeat

Hk+1 = GS
(
(Wk)

T
Wk, (Wk)TV,Hk, tol(Hk)

)
.

W k+1 = GS
(
Hk+1(Hk+1)

T
, Hk+1V T , (W k)

T
, tol(W k)

)
.

W k+1 = (W k+1)T .
k ← k + 1.

3: Until {Stopping criterion is satisfied}.
4: W = W k, H = Hk.

In particular, the GS method divides A into two parts, i.e., A =
L+U , where L is a lower triangular matrix and U is a strictly upper
triangular matrix. Substituting A = L+U into the model B = AH ,
we have a new linear system

B − UH = LH. (3)

Based on the equation (3), we can get the left-hand side of Hk+1

using the previous value of Hk on the right-hand side, i.e.,

L−1(V − UHk) = Hk+1, (4)

where k is the iteration counter. Since L is a lower triangular ma-
trix, the GS method computes the elements of Hk+1 sequentially
by using forward substitution. Specially, we further divide L into
L = UT + D since A is symmetric matrix, where D = diag(A).
Then the system can be rewritten into:

B − UHk = UTHk+1 +DHk+1. (5)

By simple algebra, we have

[B1, B2, ..., Bn]−U
[
Hk

1 , H
k
2 , ..., H

k
n

]
= (6)

UT
[
Hk+1

1 , Hk+1
2 , ..., Hk+1

n

]
+D

[
Hk+1

1 , Hk+1
2 , ..., Hk+1

n

]
,

where Bi denotes the i-th column of B, Hk
i denotes the i-th column

of Hk.
Looking more carefully at the formulation (5), we have b11 · · · b1n

...
...

...
bn1 · · · bnn

− U

 hk+1
11 · · · hk+1

1n

...
...

...
hk+1
n1 · · · hk+1

nn

=

UT

 hk
11 · · · hk

1n

...
...

...
hk
n1 · · · hk

nn

+

 a11h
k+1
11 · · · a1nh

k
1n

...
...

...
an1h

k
n1 · · · annh

k
nn

 .
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Table 1. Time complexities of NMF, NeNMF, and GSNMF.

Algorithm Time complexity of one iteration round
NMF [15] O(mnr +mr2 + nr2)

NeNMF [21] O(mnr +mr2 + nr2) +K ×O(mr2 + nr2)
GSNMF O(mnr +mr2 + nr2)

So we know that the row vector satisfies

Bi −
∑
j>i

(
aijH

k
j:

)
=
∑
j<i

(
ajiH

k+1
j:

)
+ aiiH

k+1
j: . (7)

That is to say,

(bi1, · · · , bin)−

(∑
j>i

aijh
k
j1, · · · ,

∑
j>i

aijh
k
jn

)
= (8)

(∑
j<i

ajih
k+1
j1 , · · · ,

∑
j<i

ajih
k+1
jn

)
+
(
aiih

k+1
j1 , · · · , aiih

k+1
jn

)
,

where Bi: is the i-th row vector of B, Hk
j: is the k-th iteration of

the j-th row vector of H . Therefore, Hk+1
j: could be calculated con-

nivently in the following way:

Hk+1
j: =

1

aii

(
Bi: − Ui:H

k
j: − (U:i)

THk+1
j:

)
=

1

aii

(
Bi: −

∑
j>i

aijH
k
j: −

∑
j<i

ajiH
k+1
j:

)
. (9)

The GS algorithm iteratively updates H until the stopping crite-
rion [21] is satisfied.

2.3. Computational Complexity

The main time cost of GS method is spent on computing UH in
(9). Since U is a strictly upper triangular matrix, the matrix-vector
multiplication operators in UH costs (r − 1)r multiplications and
(r − 2)r additions. In summary, the equation (9) costs (r − 1)r
multiplications, r divisions, and (r − 1)r additions. In summary,
the time complexity of GS method is O(r2). Therefore, the time
complexity of one iteration for updating W k+1 and Hk+1 is O(r2).
Recalling that the GS method computes A = WTW and B =
WTV beforehand, the time complexity of GSNMF, i.e., Algorithm
1, is O(mnr + mr2 + nr2). Table 1 shows that the complexity
of GSNMF is comparable to MUR and NeNMF. In NeNMF algo-
rithm, the K is a number less than r. Howerver, GSNMF converges
much faster at each iteration round since the rank r is much smaller
than min{m,n}. As shown in the experimental result, we can see
GSNMF runs much faster than both NeNMF and MUR.

2.4. Discussion

In GSNMF, we actually optimize H by solving a transformed prob-
lem, i.e., min

W≥0,H≥0

∥∥WTV −WTWH
∥∥2
F

, instead of solving the

original problem min
W≥0,H≥0

‖V −WH‖2F . According to the defini-

tion of the Frobenius norm, we have the following properties:

‖AB‖F ≤ ‖A‖F ‖B‖F . (10)

Table 2. Summarization of six cancer gene expression datasets.
Dataset n m r

Gastric cancer (GSE2685) 30 4522 2
Gastric cancer 2 (GSE2685) 30 4522 3

Lymphoma & leukemia (GSE1577) 29 15434 3
Lymphoma & leukemia 2 (GSE1577) 19 15434 2

Airway epithelium database (GSE5060) 22 18651 4
Soft tissue sarcomas (GSE2719) 39 18753 8
n: #(samples), m: #(genes), and r:#(cancer classes)

So, we have
∥∥WTV −WTWH

∥∥2
F
≤ ‖W‖2F ‖V −WH‖2F . If

we normalize the matrix W before each call of the GS method and
update H accordingly without influencing the approximation WH ,
the Frobenius norm of W can be made constant. This implies that
the difference between errors in the transformed problem WTV ≈
WTWH and the original problem V ≈WH is bounded.

Since GSNMF transforms the original non-negative least squares
(NNLS, [21]) problem with scale (m× r× n) into an linear system
with scale (r × r × n), GSNMF reduces the risk of failure cluster
assignments caused by the imbalance between numbers of genes
and samples in gene expression clustering.

3. EXPERIMENTS

In this experiments, we validate the effectiveness of GSNMF in
cancer gene expression clustering comparing with NMF [14] and
NeNMF [21]. Since NMF is non-convex with respect to both W and
H , to avoid the influence of random initialization, we performed
100 independent trials, and evaluated the clustering performance by
average accuracy and mutual information.

Datasets. We validated GSNMF on six popular cancer gene ex-
pression datasets which includes two gastric cancer databases, two
lymphoma & leukemia databases, one airway epithelium database
and one human soft tissue sarcomas database. Gastric cancer dataset
contains 30 samples, 4522 genes with two diagnostic classes: nor-
mal/advanced gastric cancer tissues. And gastric cancer2 dataset
contains 30 samples, 4522 genes with three diagnostic classes:
normal/diffuse and intestinal gastric cancer tissues. Lymphoma &
leukemia dataset contains 29 samples, 15434 genes with three diag-
nostic classes: T-cell lymphoblastic lymphoma (T-LL)/T-cell acute
lymphoblastic leukemia (T-ALL) and B-cell acute lymphoblastic
leukemia (B-ALL). And lymphoma & leukemia dataset contains
29 samples, 15434 genes with two diagnostic classes: T-cell lym-
phoblastic lymphoma (T-LL)/ T-cell acute lymphoblastic leukemia
(T-ALL). The Airway epithelium database contains 22 samples,
18651 genes with four diagnostic classes: normal nonsmokers/ nor-
mal smokers/ smokers with early chronic obstructive lung disease
(COPD), and smokers with established COPD. And soft tissue sar-
comas contains 39 samples, 18753 genes with eight human tissue
sarcomas. Table 2 briefly summarizes their descriptions. The top
four rows are orange data1 analyzed by bio-laboratory and the rest
two datasets are GSE data2. In the soft tissue sarcomas dataset,
we removed all the single specific experiment samples to reduce
the noise. The genes without the Present(P) calls in all samples
were excluded from the analysis to reduce the amount of noise in
the datasets, and if this was the case, we use bold-face to mark the
number of genes which lists in Table 2.

Clustering performance. Here we validate the clustering per-
formance of all algorithms in terms of two criterions, i.e., accuracy

1The orange datasets are available at http://www.biolab.si/supp/bi-
cancer/projections/.

2The GSE data can be collected from http://www.ncbi.nlm.nih.gov/gds.
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Fig. 1. The box plots of the clustering accuracies for the three NMF
algorithms over 100 runs on all the six gene expression datasets: gas-
tric cancer, gastric cancer 2, airway epithelium database, soft tissue
sarcomas, lymphoma & leukemia, lymphoma & leukemia 2.

(AC) and mutual information (MI). Accuracy estimates the overall
cluster performance by using the percentage of correctly clustered
samples. Mutual information measures the independency between
the predicted clusters and the ground truth, and it equals zero if and
only if the predicted clusters are strictly independent from the ground
truth.

It can be defined as

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (11)

where p(x, y) is the joint probability distribution function of X and
Y , and p(x) and p(y) are the marginal probability distribution func-
tions of X and Y respectively. Mutual information measures the
similarity of two different groups. In this paper, we use MI to cal-
culate correlation of predicted label matrix Y and ground truth label
matrix X . Generally speaking, if MI equals 1, it means X shares all
the information in Y . If MI is 0, X and Y are absolutely different.

We used boxplot to depict the averaged AC and MI for 100 trials.
Figure 3 shows the clustering accuracy of the three NMF algorithms
on all datasets we used. From the figure we could see that the ac-
curacy of GSNMF is much higher than MUR and is slightly higher
than NeNMF. Figure 3 shows the MI of the three NMF algorithms on
all datasets. It is obvious that GSNMF achieve the best performance
on all datasets.

Figure 3 depicts the convergence curves of three NMF algo-
rithms. Notably, GSNMF keeps running fastest for on all the three
datasets. For better comparison, the stopping condition of the three
algorithms was set identically. Here we could discover that the con-
vergence rate of GSNMF is must faster than NeNMF and consis-
tently faster than MUR, and the computing consumption of GSNMF
is consistently the least.

4. CONCLUSION

This paper proposes a Gauss-Seidel based non-negative matrix fac-
torization (GSNMF) method. GSNMF iteratively projects the sam-
ples onto the subspaces spanned by each factor matrix and makes
the updates another factor matrix by solving a linear system with
the Gauss-Seidel method. By analyzing the error bound between
GSNMF and NMF, we show that GSNMF can obtain a local minima
of NMF. GSNMF can reduce the influence of imbalance between
number of genes and number of samples, and thus outperforms NMF
for gene expression clustering.
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