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ABSTRACT

We propose to use orthogonal feature detectors in artificial neu-
ral networks for the robustness of performance under noisy condi-
tions. The motivation is grounded on the principle that orthogonal
decomposition is the most efficient among all representation of a sig-
nal. In this paper, we incorporate orthogonalization in the process of
learning the network weights. In our implementation, the constraint
of orthogonality is enforced by applying Gram-Schmidt processes to
the feature detectors during network training. The proposed method
is evaluated on MNIST database for hand-written digit recognition.
The images in the training set are not corrupted, while the images in
the test set are artificially corrupted with white noises. Experimen-
tal results show that the proposed orthogonalization method achieves
56.4% relative improvement in recognition error rate over a conven-
tional learning method without orthogonalization. Given that the
clean training data and the noisy test data are clearly mismatched,
such an improvement with artificial neural networks is indeed very
remarkable. For engineering insight, we devise a visualization tool
which illuminates interesting features of the neurons learned by the
proposed method.

Index Terms— orthogonality, noise-robustness, feature detec-
tor, neural network

1. INTRODUCTION

Artificial neural networks (ANNs) are machine-learning models
based on the implications of biological neural systems [1]. In
ANN, neurons are interconnected and they exchange messages via
weighted links. The learning ability of ANN stems from the fact that
the weights in the connective neurons can be modified to maximize
the likelihood or minimize the error of a training data set. With
the ability of automatically adapt to real data, neural networks have
been used to solve a wide variety of tasks which are hard to solve
using traditional methods [2].

A deep neural network (DNN) is a feed-forward neural network
which has more than one hidden layers between its input and out-
put layers [3]. With sufficient training data and appropriate train-
ing strategies [4, 5], DNN performs very well in certain difficult
machine-learning tasks [6]. In a wide range of research domains, e.g.
speech recognition, visual object recognition and text processing,
the state-of-the-art performance has been achieved or even beaten
by DNN [7, 8, 9]. Given the huge success of deep learning in so
many applications, one critical issue remains to be addressed, i.e.,
data mismatch. It is well-known that data mismatch often leads to

severe degradation for a classification/recognition system based on
data-driven learning paradigm.

The issue of noise-robustness within the framework of deep
learning has been addressed in the application of automatic speech
recognition. Audio and visual features have been combined in deep
learning [10]. Two masking functions have been estimated to sepa-
rate speech from noises for improving DNN acoustic models [11]. A
DNN-based system has been shown to reduce word error rate (WER)
by up to one third over a discriminatively trained Gaussian mixture
model-based (GMM-based) system on a challenging conversational
speech transcription task [12].

To look into the issue of noise-robustness, we propose to apply
orthogonality constraints to the feature detectors in feed-forward
neural networks, and evaluate the proposed method with hand-
written digit recognition in this work. Feed-forward neural networks
have been applied to hand-written digit recognition [13]. With
clean data, the performance is generally good [14]. However, when
the data is corrupted, e.g. by stains or spots, the recognition ac-
curacy degrades severely. In our survey, it has been reported that
deep learners benefit more from out-of-distribution examples than a
corresponding shallow learner, at least in the area of hand-written
character recognition [15]. Furthermore, a supervised deep learning
approach has been proposed to remove structural noise in the images
of hand-written digits [16].

This remainder of this paper is organized as follows. The base-
line neural network system for hand-written digit recognition is out-
lined, which is followed by the proposed orthogonality method for
parameter estimation in Section 2. Evaluation schemes and results
are presented and followed by comments on the results in Section 3.
Finally, concluding remarks are given in Section 4, and we hint a
few tentative directions for our future research works.

2. SYSTEM AND PROPOSED METHOD

2.1. Basic System

We begin with an neural-network system for hand-written digit
recognition [17]. The overall system architecture is depicted in
Figure 1. This simple system provides a very decent baseline with
a low recognition error rate when the images of hand-written digits
are not corrupted.

The open data set of MNIST [18] is used in the experiments.
MNIST consists of images of scanned hand-written digits. Each im-
age is represented by 28 × 28 pixels. Thus, there are I = 784
neurons in the input layer, each corresponding to a pixel. There are

2354978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Input layer

(784 neurons)

Image

(28 × 28 pixels)

Recognition  Model

Output layer

(10 neurons)

Hidden layer

(30 neurons)

Fig. 1. Composition of a 3-layer neural network of hand-written
digit recognition implemented for this work. The architecture is kept
simple to illuminate the main point of using orthogonalization.

K = 10 sigmoid neurons in the output layer, each corresponding to
a digit class. The hidden layer contains J neurons (we experiment
with the cases of J = 10, 15, 30). Note that we also call the hidden-
layer neurons the feature detectors, which are automatically learned
from data via stochastic gradient descent with error back propaga-
tion [19].

2.2. Noise-robustness through Orthogonalization

Our goal is to achieve noise-robustness when the training data and
test data are mismatched with simple and effective methods. In this
work, we propose to use orthogonal feature vectors. Specifically, the
weight vectors of the hidden-layer feature detectors are orthogonal-
ized. Before orthogonalization, the set of weight vectors is a basis
of a subspace in R28×28. Given these basis vectors, we apply the
Gram-Schmidt process. After orthogonalization, the set of weight
vectors is orthonormal.

In our implementation, the Gram-Schmidt process is applied
within each epoch when the weights have just been updated (through
error back propagation). The alternation of weight update and or-
thogonalization is repeated for a predetermined number of epochs.
The block diagram of the proposed method is depicted in Figure 2.

For precise illustration, consider a neural network with J = 30
hidden-layer neurons. Let the weights of the links from the input-
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Fig. 2. Parameter learning incorporating the proposed orthogonal-
ization method for noise-robustness. On top of the conventional
parameter-learning algorithm of error back-propagation, we intro-
duce an orthogonalization module based on the Gram-Schmidt pro-
cess.

layer neurons to the hidden-layer neurons be denoted by a matrix

WJ×I = {wji}, where j = 1, . . . , J and i = 1, . . . , I .

The weight vectors are the vectors

wj = [wj1, . . . , wjI ]
T , j = 1, . . . , J.

At the end of stochastic gradient descent of epoch e, let the just-
updated weight vectors be denoted by

w
(e)
j , j = 1, . . . , J.

The Gram-Schmidt process is applied to {w(e)
1 , . . . ,w

(e)
J }, with

w′
(e)
j = N

(
w

(e)
j −

j−1∑
i=1

〈
w

(e)
j ,w′

(e)
i

〉
w′

(e)
i

)
, j = 1, . . . , J,

where < u,w > is the inner-product of vectors u and w andN (v)
normalizes a vector v to be of unit length, to obtain an orthonormal
basis

w′
(e)
j , j = 1, . . . , J.

This completes an epoch. The updated weights w′(e)1 , . . . ,w′
(e)
J are

used to run the stochastic gradient descent of the next epoch, i.e.,
epoch e+ 1.
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3. EXPERIMENTS

In hand-written digit recognition, there may be corruptions such as
pen stains or dirty spots to the data. We simulate data corruption
by artificially adding noises to the images of the test data set. In
other words, we create a situation of data mismatch, which makes
the recognition tasks more challenging but also more interesting.

3.1. Data

The MNIST hand-written digit database [18] has been used through-
out this study. The database has a training set of 60,000 examples,
and a test set of 10,000 examples. The examples are scanned im-
ages of hand-written digits from 250 people, half of whom are US
Census Bureau employees, and half of whom are high school stu-
dents. All the digits have been size-normalized and centered in a
fixed-size image with 28 × 28 pixels. The value at each pixel is the
greyscale, normalized to the range from 0.0 (white) to 1.0 (black).
A total number of 784 pixel values are fed to the neural network
input-layer neurons.

White noises are added only to the test images, while the training
data set remains clean. Specifically, we add white noises to each
image in the test data set with different signal-to-noise ratio (SNR)
levels of 0, 5, 10, 15, and 20 dBs. For example, Figure 3 shows the
images of a digit corrupted by different levels of noise.

3.2. Stochastic Gradient Descent Parameters

The implementation is based on Numpy [20], a Python library, for
doing fast linear algebra. The biases and weights in the network are
all initialized randomly, and stored as lists of Numpy matrices. The
number of epochs is set to 30 and the learning rate η in

w(new) ← w(old) − η ∇wE(w)

∣∣∣∣
w(old)

is set to 3.0.1 In each epoch, the training data are shuffled and parti-
tioned into mini-batches of 10 samples each. With each mini-batch,
the learning process invokes the back propagation algorithm to up-
date the parameters.

3.3. Evaluation Results

We report the results of three configurations of experiments. The
first configuration, denoted by C, is the case where clean test images
are used. The second configuration, denoted by N, is the case where
noise-corrupted test images are used. In both C and N, the proposed
orthogonalization is not applied. The third configuration, denoted
by O, is the case where noise-corrupted test images are used, and
the proposed orthogonalization method is applied in the process of
learning network parameters.

The results of configuration C is shown in Table 1. Here the
number of neurons in the hidden layer is varied. From this table, we
can see that increasing the number of neurons in the hidden layer
improves the performance, upto 30 neurons. In addition, we can see
that the trained neural network achieves 95.1% accuracy when the
test images are not corrupted by noises.

The results of configuration N is shown in Table 2. In this case,
the test images are corrupted by noises with various levels of SNR.
The hidden layer contains 30 neurons. From this table, we can see

1Here E(w) is an error function, and the sum of squared error is used in
this work.

(a) (b) (c)

(d) (e) (f)

Fig. 3. The images of a digit corrupted by white noises. (a) the
original image, (b) – (f) images of the same digit corrupted by noises
with 0, 5, 10, 15, 20 dB SNRs.

Table 1. Results of a neural-network system trained with a conven-
tional method. Both the training data and the test data are clean.
This is also referred to as configuration C. Based on these results,
subsequent experiments (with noisy test images) use 30 hidden-layer
neurons.

# neurons in the hidden layer recognition accuracy
10 91.1
15 93.3
30 95.1

that when the test images are corrupted by noises, the performance
of the neural network significantly degrades. In the case of 0 dB, the
error rates increase by more than 3 times. Very clearly, the neural
network trained by the baseline method is not robust to noise.

The results of configuration O is shown in Table 3. In this
case, the neural network is trained by the proposed orthogonaliza-
tion method. Again, the test images are corrupted by noises with
various levels of SNR, and the hidden layer contains 30 neurons.
From this table, we can see that a neural-network system trained
with the proposed orthogonalization method is very robust to noise.
The degradation of performance with noise is very graceful. Com-
pared to configuration N, one can see that the noisier the test images,
the more significant the relative improvement. Take the 0 dB case for
example, the relative improvement over a system trained without the
proposed orthogonalization method is 56.4%. These results are truly
remarkable.

3.4. Visualization of Learning

A neuron in the hidden layer, say neuron j, can be visualized by an
image which is as large as the input image. In such an image, the
grey-scale value at pixel i corresponds to the weights wij of the link
from the input neuron i to the hidden-layer neuron j. We call such
an image a weight image.

In Figure 4, we show the weight images of one neuron with and
without incorporating the proposed orthogonalization process during
parameter learning. The proposed orthogonalization method brings
a significant difference to the learned feature detectors (neurons).
Without orthogonalization, the learned weights are distributed over
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Table 2. Results of a neural-network system trained with a conven-
tional method (without orthogonalization), and tested with corrupted
images, i.e., configuration N. The rightmost column summarizes the
performance of the system using noisy test images relative to using
clean test images, showing very severe degradation as the noise level
increases.

SNR in dB recognition accuracy rel. imp. over∞
∞ (clean) 95.1 =
20 94.9 -4.1
15 94.5 -12.2
10 93.6 -30.1
5 91.4 -75.5
0 81.9 -269.4

Table 3. Results of a neural-network system trained with the pro-
posed orthogonalization method incorporated, and tested with cor-
rupted images, i.e., configuration O. The rightmost column sum-
marizes the relative improvement in recognition error rates over the
baseline without orthogonalization, i.e., configuration N. One can
see very significant improvements. Note the degradation of O rela-
tive to C is much more graceful than N.

SNR in dB recognition accuracy rel. imp. over N
20 94.3 -12.2
15 95.0 9.1
10 95.3 26.6
5 94.6 38.1
0 92.1 56.4

without orthogonalization with orthogonalization

Fig. 4. Visualization of feature detectors. Here we show the weight
images of one neuron in the hidden layer. Left: the weight image of
a neuron without incorporating orthogonalization (baseline). Right:
the weight image of the same neuron with orthogonalization incor-
porated (proposed).

the entire image, leading to a mosaic texture. With the proposed or-
thogonalization, the learned weights are more focused in the central
area of the image, where the critical information for digit recognition
is located. As a result, the features are more salient when they are
required to be orthogonalized in each epoch. Put another way, the
weights in the peripheral area are subdued, and thus a neuron is less
likely to be activated by spurious correlation when the input is noisy.

4. CONCLUSION

In this paper, we propose a neural-network learning method which
incorporates orthogonalization to achieve noise-robustness. Evalu-
ated on the MNIST database for hand-written digit recognition, the
proposed method achieves 56.4% relative improvement over a base-
line neural-network learning method without orthogonalization. In
addition, we have devised a visualization method which provides in-
sights into the nature of the learning process.

In the future, we will combine the basic idea of orthogonaliza-
tion with other noise-robustness techniques to see if incremental im-
provements can be achieved. Furthermore, we will apply the pro-
posed method to spoken-language-processing applications, such as
speech emotion recognition and automatic speech recognition under
noisy conditions.
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