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ABSTRACT

This paper focuses on learning a coupled dictionary between
multimodal datasets where the data of different modes can be
described as a function of each other. Our method is able
to reconstruct the data of one mode by using the data of an-
other mode. This provides the advantage on applications that
low-quality data are generally available and high-quality data
are not. We employ a concurrent intracranial and scalp EEG
dataset, to learn a dictionary and a mapping function between
the two modalities. The aim is to infer the intracranial from
only the scalp EEG by using that dictionary and mapping
function. The novelty of this work is the development of an
algorithm that obtains an optimal coupled dictionary, sparse
coefficients and the mapping function between modalities.

Index Terms— coupled dictionary learning, sparsity, in-
tracranial, EEG, superresolution

1. INTRODUCTION

Detection of interictal epileptiform discharges (IED) from
scalp EEG (sEEG) is highly desirable for a variety of clinical
and research fields. Since intracranial EEG (iEEG) IEDs cor-
respond more closely to the true brain activity their accurate
estimation enables better diagnosis and accurate estimation
of brain functions. IEDs present on sEEG are considered
degraded by interference, attenuation, blurring, or delay as
compared to those on iEEG [1].

Dictionary learning is a widely used methodology in sig-
nal processing and machine learning research. It involves
modelling data as a linear combination of basis elements
called atoms. The main advantage of such a method is that if
the dictionary describes the target signal accurately, noise in
the reconstructed signal will be reduced since the noise does
not fit the dictionary. Sparse coding is one of the method-
ologies that the atoms are combined and has numerous ap-
plications in fields where data vectors are desired to consist
only of a small number of atoms. For a review of dictionary
learning and sparse coding please refer to [2]. Dictionary
learning methods have also been applied in the EEG field [3]
and for processing of epileptic data [4].
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The main novelty of this work is that we learn a common
dictionary and its mapping function between coupled modal-
ities. We assume that the same sparse approximation is valid
for both modes and that the signal from one can be recon-
structed by estimating the sparse coefficients from the other.
The advantage is that when only the data from one modal-
ity are available and their sparse representation is computed,
we can reconstruct the data from the other modality. There
are many real-world cases where high-quality data are to be
reconstructed from low-quality data.

There have been only a few studies with coupled dictio-
naries in the literature. In [5], [6] and [7] different dictionaries
are learned but a common mapping between the sparse coeffi-
cients is estimated. In a superresolution context [8], the cou-
pled dictionaries share the same coefficients but are allowed
to take any form and no mapping between them is estimated.
In [9], the dictionaries are jointly learned which describe dif-
ferent aspects of the same image. In [10], the dictionaries in
temporal and DFT domains are learned jointly together with
a mapping between the sparse coefficients. Our contributions
can be summarised as follows:

• estimation of a linked dictionary for both modalities
• estimation of a linear mapping between the dictionaries

that enables the reconstruction of one from the other by
using shared sparse approximation coefficients

In Section 2.1 we describe the theory behind dictionary
learning and sparse coding. Section 2.2 derives our coupled
dictionary learning approach while in Section 2.3 we describe
the performance of our method and the comparison proce-
dures we follow. In Section 3 we show results for both simu-
lated and real epileptic data. Section 4 concludes the paper.

2. METHODS

2.1. Dictionary Learning and Sparse Coding

Dictionary learning involves the process of estimating a dic-
tionary D ∈ RN×m that can accurately describe a signal
y ∈ RN by estimating m atoms each denoted by dj . The sig-
nal is expressed as a linear combination, a, of a small number
atoms where if m > N the dictionary is overcomplete and
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spans the signal subspace. The signal is expressed as:

y = Da =
∑

j=1 :m

djaj (1)

where typically it is desired that the coefficients are sparse so
that the reconstructed signal contains only a few significant
atoms. The joint dictionary learning and sparse approxima-
tion is therefore formulated as:

argmin
D,a

||y −Da|| s.t . ||a||0 (2)

where ||.||p denotes the lp norm which for the case of the l0-
norm is NP hard and nonconvex. Approximate algorithms are
traditionally applied and in this work we use nonnegative least
squares methods and Lagrange multipliers to obtain the sparse
coefficients and the dictionary. The Sparse Representation
Toolbox was used and modified for all computations [11].

2.2. Coupled Dictionary Learning

In this work we provide a new coupled dictionary learning
with sparse approximation (CDLSA) formulation that takes
advantage of datasets, where coupled signals from different
modalities are linked by a linear operator C. Examples of
such signals can be low and high quality images of the same
object, measurements from different devices and in our case
concurrent intracranial and scalp EEGs. Let xi ∈ RN be the
high quality signal and xs ∈ RM be the low quality signal
with:

xs = Cxi +W (3)

where C ∈ RN×M and W denotes measurement and mod-
elling noise. We wish to estimate a dictionary D ∈ RN×m

that is common between the modalities in a similar fashion:

Ds = CDi ≡ CD (4)

The usual sparse dictionary learning can converted to our
problem as such:

J(D,a) = ||xs −CDa||22 + ||xi −Da||22 + λ||a||1 (5)

Both modalities use the same sparse coefficients since the
same processes generate both modalities’ signals. We con-
vert Eq. (5) to the standard form as:

J(D,a) = ||x̂− D̂a||22 + λ||a||1 (6)

where x̂ =

[
xs

xi

]
and

D̂ =

[
C
I

]
D = ĈD (7)

Since we are using the standard form, any dictionary learning
and sparse decomposition method can be used to solve Eq.

(6). The coupled dictionary D admits an analytic expression
by considering L examples from our linked datasets Xi ∈
RN×L, Xs ∈ RM×L and X̂ ∈ R(N+M )×L. Eq. (6) can be
expanded as follows:

J(D,a) =XTX̂+ATDTĈTĈDA−ATDTCTX̂ (8)

where A contains the sparse coefficients for each example.
By taking the derivative w.r.t. D and setting that to zero, we
obtain the solution for the dictionary D:

∂J(D,a)

∂D
= (ĈTĈ)DAAT − ĈTX̂AT = 0 (9)

D = (ĈTĈ)−1X̂AT(AAT)−1 (10)

The step for learning the sparse coefficients is performed for
each example sequentially by converting Eq. (6) to the format
aTHa + aTg s.t. a ≥ 0. For each a ∈ A we solve the
standard nonneagive quadratic programm (NNQP):

aT(D̂TD̂)a− aT(D̂Tx̂− λ) s.t . a ≥ 0 (11)

where λ controls the sparsity of the solution. The algorithm
alternates between estimating D and A until convergence de-
termined by the residual in Eq. (6). The linear function C can
also be estimated by argminC ||Xs−CDA|| which is solved
approximately for:

C = Xs(DA)† (12)

where † denotes the pseudoinverse. When the optimisation of
C is performed the algorithms alternates between estimating
D, A and C.

2.3. Performance Evaluation

Since the overarching aim is to reconstruct the high quality
signals xi from low quality signals xs when e.g. xi are not
available but xs are, we perform sparse coding with the dic-
tionary Ds corresponding to the low quality signal only. Re-
call Eq. (4) where Ds = CD with D and C given by the
coupled dictionary algorithm. The sparse coefficients for a
test signal xtst

s are given by:

argmin
atst

||xtst
s −CDatst ||22 + λ||atst ||1 (13)

Then, the same atst is used to reconstruct xtst
i by dropping

C:
ytst
i = Datst (14)

The first motivation behind our proposed method is that the
reconstructed test signal of Eq. (14) can be a better approxi-
mation to the true high quality signal than a signal based on a
dictionary learned directly from xi with a subsequent estima-
tion of the linear function C′. In other words we compare the
signal obtained by our method with a signal:

ztsti = D′iq
tst (15)
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where D′i has been obtained by traditional dictionary learning
for only the high quality signal xtrn

i and qtst are the coeffi-
cients of the test set. The mapping function is obtained in a
similar way to the CDLSA method:

C′ = Xtrn
s (DiQ

trn
i )† (16)

where Qtrn
i are the sparse coefficients of all trials obtained

from the training set. The sparse coefficients of the test signal
are obtained as such:

argmin
qtst

||xtst
s −C′D′iq

tst ||22 + λ||qtst ||1 (17)

Hence, the reconstructed signal ytst
i from our proposed

method can be compared with ztsti . We denote the method
that obtains ztsti as DLSA+C.
We also compare our method with that of [8] for which the
two dictionaries can take a different form i.e. instead of Eq.
(18) the coupled dictionary can take any form and the function
C is not estimated:

D̂ =

[
Ds

Di

]
(18)

3. RESULTS

3.1. Dataset

The study included the data from 10 patients with scalp EEG
recordings and simultaneous intracranial multicontact fora-
men ovale (FO) electrode bundles in the Department of Clin-
ical Neurophysiology at Kings College Hospital [12]. Two
flexible bundles of 6 electrodes each were inserted through
the left and right FO [13]. Cable telemetry of 32 channels
was used for data acquisition. Data were digitised at 200 Hz
and bandpass filtered in the device ([0.3 70]Hz). From each
patient, a period of 20 min of intracranial EEG recordings
were transcribed onto a digital file. A clinician visually in-
spected the iEEG data and marked the timepoints of epileptic
spikes. Both iEEG and sEEG were sliced (i.e. trials) accord-
ing to those timepoints in a ±162.5ms window and further
used for analysis. The data were pre-processed by further fil-
tering at the [1 45]Hz range and common average referenced
separately for iEEG and sEEG. Baseline drifts were removed
by performing first order linear detrending. Each multichan-
nel trial of both modalities was subsequently vectorised. This
step was performed such that iEEG and sEEG admit the same
representation. We split each patient’s dataset in two equal
parts, a training set where the dictionary learning was per-
formed and a test set where the reconstructed signals were
obtained.

3.2. Epileptic Data

All the methods were applite to each subject separately and
the error on each was computed. The error was computed as

the average mean square error over each subject’s trials on
the test set. Note that each subject has a different number of
trials ranging from 50 to 900. Initially, we performed a grid
search on the training set to obtain reasonable parameters for
the number of atoms m. The error on the training set grad-
ually decreased as m increased. However, a good choice for
the numbers of atoms was set at m = 10 since the test error
didn’t decrease any further after that. Similarly, the sparsity
parameter was set at λ = 0.05.

The first test we performed was to create a set of semi-
simulated data for each subject. The scalp EEG was a simu-
lated as a noisy version of the intracranial:

xs = Cxi + σW (19)

where C was a random propagation function from the in-
tracranial to the scalp EEG, W standard gaussian noise and
σ controls the variance of the noise. For each subject, we cal-
culated the sparse approximation on the test set of the scalp
signals. Subsequently, we calculated the decrease in test error
of the reconstructed intracranial signal between our method,
the method in [8] as compared with the DLSA+C method de-
scribed in Section 2.3. For increasing σ we show the group
average test error in Figure 1. In this case the function C
was estimated from the data. For known and fixed C, we
obtained Figure 2. Initially, as σ increases, both our method
and the one in [8] perform better than the benchmark method
DLSA+C for both cases. After a point, the improvement is
longer effective since noise has degraded the scalp signal sub-
stantially.
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Fig. 1. Group average percentage decrease in error on the test
set between our CDLSA method and the method in [8] with
the DLSA+C method described in Section 2.3. The mapping
C was estimated from the data.

For m = 10, λ = 0.05 we obtained the results in Table 1
which shows the reconstructed errors of the intracranial signal
on the test set.
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Fig. 3. Examples of single-channel reconstructed intracranial signals for four different subjects. Averaging the obtained time
courses over trials we get waveforms for the true test signal, our method, the method in [8] and the DLSA+C method.
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Fig. 2. Group average percentage decrease in error on the test
set between our CDLSA method and the method in [8] with
the DLSA+C method described in Section 2.3. The mapping
C was assumed known and was fixed for both our and the
DLSA+C methods.

4. CONCLUSIONS

We developed an algorithm that estimates a coupled dictio-
nary and a mapping function C for a concurrent iEEG and
sEEG epileptic dataset. The dictionary and mapping function
were used by scalp-only EEG segments in order to estimate
which atoms best describe and model those segments. Subse-
quently, we transformed the solution to the corresponding in-
tracranial signal. The algorithm was able to better reconstruct
the intracranial signal compared to that done by traditional
dictionary learning.

Table 1. Reconstruction error in the test set between the esti-
mated and true intracranial signal. We compare our CDLSA
method, the DLSA+C method described in Section 2.3 and
the one in [8].

Subject/Test Error CDLSA DLSA+C [8]
1 0.073 0.076 0.073
2 0.187 0.191 0.188
3 0.180 0.185 0.182
4 0.116 0.121 0.117
5 0.113 0.116 0.111
6 0.068 0.070 0.070
7 0.109 0.114 0.106
8 0.095 0.095 0.102
9 0.067 0.077 0.069
10 0.091 0.092 0.090

For simulated data our method performed equally well as a
similar method in [8] when the mapping C was learned from
the data. On the other hand, it performed better when the
mapping C was assumed known and fixed. The main reason
for this is that since in [8] the dictionaries of both modalities
can take any form they are more prone to overfitting the noise.
A known C overcomes that issue. For real epileptic data, both
coupled dictionary methods performed equally well however
our method enables the estimation of C. For future work we
will develop physiologically plausible solutions C so that we
obtain better solutions than the approximation of Eq. (12), de-
velop methods that allow different C to be used for different
trials, and learn a coupled wavelet based dictionary.
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