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ABSTRACT

T-SNE is a well-known approach to embedding high-
dimensional data. The basic assumption of t-SNE is that the
data are non-constrained in the Euclidean space and the local
proximity can be modelled by Gaussian distributions. This
assumption does not hold for a wide range of data types in
practical applications, for instance spherical data for which
the local proximity is better modelled by the von Mises-
Fisher (vMF) distribution instead of the Gaussian. This paper
presents a vMF-SNE embedding algorithm to embed spheri-
cal data. An iterative process is derived to produce an efficient
embedding. The results on a simulation data set demonstrated
that vMF-SNE produces better embeddings than t-SNE for
spherical data.

Index Terms— Data embedding, data visualization, t-
SNE, Von Mises-Fisher distribution

1. INTRODUCTION

High-dimensional data embedding is a challenging task in
machine learning. Principally, data embedding involves pro-
jecting high-dimensional data to a low-dimensional (often 2
or 3) space where the major structure (distribution) of the data
in the original space is mostly preserved. Therefore data em-
bedding can be regarded as a special task of dimension reduc-
tion, with the objective function set to preserve the structure
of the data.

Various traditional dimension reduction approaches can
be used to perform data embedding, e.g., the principal com-
ponent analysis (PCA) [1] and the multi-dimensional scaling
(MDS) [2]. Both of them are linear embedding. A multitude
of non-linear embedding approaches are also proposed. The
first approach is to derive the global non-linear structure from
local proximity, e.g., ISOMAP [3, 4] and self-organizing map
(SOM) [5]. The local linear embedding (LLE) formulates
the embedding as a local-structure learning based on linear
prediction [6]. Another approach to deriving the global non-
linear structure involves various kernel learning methods, e.g.,
the semi-definite embedding based on kernel PCA [7] and the
colored maximum variance unfolding (CMVU) [8].

A major problem of the above non-linear embedding
methods is that most of them are not formulated in a prob-
abilistic way, which leads to potential problems in gener-
alizability. The stochastic neighbor embedding (SNE) [9]
attempts to solve the problem by modeling local proximity

(neighbourhood) in both the original and embedding space by
Gaussian distributions, and the embedding process minimizes
the kullback-leibler (KL) divergence of the distributions in
the original space and the embedding space. A potential
drawback of SNE is the ‘crowding problem’, i.e., the data
samples tend to be crowded together in the embedding space.
[10] proposed t-SNE to solve the problem, with a Student
t-distribution rather than a Gaussian distribution to model
similarities between images. T-SNE has shown clear supe-
riority over other embedding methods particularly for data
that lie within several different but related low-dimensional
manifolds.

Although highly effective in general, t-SNE is weak in
embedding data that are not Gaussian. For example, there
are many applications where the data are distributed on a
hyper-sphere, such as the topic vectors in document process-
ing [11] and the normalized i-vectors in speaker recogni-
tion [12]. These spherical data are naturally modelled by the
von Mises Fisher (vMF) distribution rather than the Gaus-
sian [13, 14, 15], and hence are unsuitable to be embedded by
t-SNE. This paper presents a vMF-SNE algorithm to embed
spherical data. Specifically, the Gaussian distribution and
the Student t-distribution used by t-SNE in the original and
the embedding space respectively are all replaced by the vMF
distribution, and an EM-based optimization process is derived
to conduct the embedding. The experimental results on simu-
lation data show that vMF-SNE produces better embeddings
for spherical data. The code is publicly available1.

The rest of the paper is organized as follows. Section 2
describes the related work, and Section 3 presents the vMF-
SNE algorithm. The experiment is presented in 4, and the
paper is concluded in Section 5.

2. RELATED WORK

This work belongs to the extensively studied area of dimen-
sion reduction and data embedding. Most of the related work
in this field has been mentioned in the previous section. Par-
ticularly, our work is motivated by t-SNE [10], and is de-
signed specifically to embed spherical data. A more related
work is the parametric embedding (PE) [16], which embeds
vectors of posterior probabilities, thus sharing a similar goal
as our proposal: both attempt to embed data in a constrained
space though the constrains are different (`-1 in PE and `-2 in
vMF-SNE).

1http://cslt.riit.tsinghua.edu.cn/resources.php?Public%20tools
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Probably the most relevant work is the spherical seman-
tic embedding (SSE) [17]. In the SSE approach, document
vectors and topic vectors are constrained on a unit sphere and
are assumed to follow the vMF distribution. The topic model
and the embedding model are then jointly optimized in a gen-
erative model framework by maximum likelihood. However,
SSE infers local similarities between data samples (document
vectors in [17]) using a pre-defined latent structure (topic vec-
tors), which is difficult to be generalized to other tasks be-
cause the latent structure in most scenarios is not available.
Additionally, the cost function of SSE is the likelihood, while
vMF-SNE uses the symmetric KL divergence.

3. VMF-DISTRIBUTED STOCHASTIC
NEIGHBOURING EMBEDDING

3.1. t-SNE and its limitation

Let {xi} denote the data set in the high-dimensional space,
and {yi} denote the corresponding embeddings, or images.
The t-SNE algorithm measures the pairwise similarities in the
high-dimension space as the joint distribution of xi and xj
which is assumed to be Gaussian, formulated by the follow-
ing:

pij =
e−||xi−xj ||2/2σ2∑

m 6=n e
−||xm−xn||2/2σ2 . (1)

In the embedding space, the joint probability of yi and yj is
modelled by a Student t-distribution with one degree of free-
dom, given by:

qij =
(1 + ||yi − yj ||2)−1∑

m6=n (1 + ||ym − yn||2)−1
. (2)

The cost function of the embedding is the KL divergence be-
tween pi,j and qi,j , which is formulated by:

KL(P ||Q) =
∑
i

∑
j

pij ln
pij
qij
.

A gradient descent approach has been devised to conduct the
optimization, which is fairly efficient [10]. Additionally, the
symmetric form of Eq. (1) and the long-tail property of the
Student t-distribution alleviate the crowding problem suffer-
ing the original SNE and other embedding approaches.

The assumption that t-SNE holds deserves highlight: the
joint probabilities of the original data and the embeddings fol-
low a Gaussian distribution and a Student t-distribution, re-
spectively. This is generally fine in most scenarios, however
for data that are confined in a non-linear subspace, this as-
sumption is potentially invalid and the t-SNE embedding is
no longer most appropriate. This paper focuses on spherical
data embedding, for which t-SNE tends to fail. This is be-
cause the Gaussian distribution assumed by t-SNE can hardly
model spherical data, and the Euclidean distance associated
with Gaussian distributions is not appropriate to measure sim-
ilarities on a hyper-sphere. A new embedding algorithm is
proposed, which shares the same embedding framework as
t-SNE, but uses a more appropriate distribution and a more
suitable similarity measure to model spherical data.

3.2. vMF-SNE

It has been shown that the vMF distribution is a better choice
than the Gaussian in modelling spherical data, and the asso-
ciated cosine distance is better than the Euclidean distance
when measuring similarities in a hyper-spherical space, for
instance, in tasks such as spherical data clustering [18, 19].
Therefore, we present an embedding method based on the as-
sumption that the data in both the original and the embed-
ding space follow vMF distributions. This new method is thus
called ‘vMF-SNE’.

Mathematically, the probability density function of the
vMF distribution on the (d-1)-dimensional sphere in Rd is
given by:

fd(x;µ, κ) = Cd(κ)e
κµT x

where ||x|| = ||µ|| = 1, κ > 0 and µ are parameters of
the distribution and Cd(κ) is a normalization constant. Note
that the vMF distribution implies the cosine distance. As in
t-SNE, the symmetric distance is used in both the original and
embedding space. In the original space, define the conditional
probability of xj given xi as:

pj|i =
fd(xj ;xi, κi)∑

m 6=i fd(xm;xi, κi)
, (3)

the joint distribution pij is defined as pij =
pi|j+pj|i

2 . In the
embedding space, a simpler form of joint distribution is cho-
sen by setting the concentration parameter ki the same for all
yi. This choice follows t-SNE, and the rationale is that the
distribution pj|i in the original space needs to be adjusted ac-
cording to the data scattering around xi. However, doing so
in the embedding space will cause unaffordable complexity in
computation, as we will see shortly. The joint distribution qij
with this simplification is given by:

qij =
eκy

T
i yj∑

m 6=n e
κyTmyn

. (4)

As in t-SNE, the KL divergence between the two distributions
is used as the cost function:

L =
∑
i

∑
j

pij ln
pij
qij

By gradient descendant, minimizing L with respect to {yi}
leads to the optimal embedding. The gradients will be derived
in the following section.

3.3. Gradient derivation

First note that

L =
∑
i,j

pij ln(pij)−
∑
i,j

pij ln(qij).

Since the first item on the right hand side of the equation is
in dependent of the embedding, minimizing L equals to max-
imizing the following cost function:

L̃ =
∑
i,j

pij ln(qij).
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Define Z =
∑
m 6=n e

kyTmyn , we have:

L̃ = κ
∑
i,j

pijy
T
i yj − lnZ,

where
∑
i,j pij = 1 has been employed. The gradient of L̃

with respect to the embedding yk is then derived as:

∂L̃
∂yk

= 2κ
∑
i

pikyi −
1

Z

∂lnZ

∂yk
(5)

= 2κ
∑
i

pikyi −
2κ

Z
{
∑
i

eκy
T
i ykyi} (6)

= 2κ
∑
i

(pik − qik)yi (7)

This is a rather simple form and the computation is efficient.
Note that this simplicity is partly due to the identical κ in
the embedding space, otherwise the computation will be very
demanding.

Algorithm 1 illustrates the vMF-SNE process. Notice that
in the original data space, κi is required. Following [10], κi
is set to a value that makes the perplexity Pi equal to a pre-
defined value P , where Pi is formulated by:

Pi = 2H(pj|i) (8)

and H(·) is the information entropy defined by H(pj|i) =
−
∑
j pj|ilog2(pj|i), where pj|i has been defined in Eq. (3).

As mentioned in [10], making the perplexity associated to
each data point the same value normalizes the data scattering
and so benefits outliers and crowding areas.

Algorithm 1 vMF-SNE

Require:
Input:
{xi; ||xi|| = 1, i = 1, ..., N}: data to embed
P: perplexity in the original space
κ: concentration parameter in the embedding space
T: number of iterations
η: learning rate
Output:
{yi; ||yi|| = 1, i = 1, ..., N}: data embeddings

Ensure:
1: compute {κi} according to Eq. (8)
2: compute pij according to Eq. (??), and set pii = 0
3: randomly initialize {yi}
4: for t = 1 to T do
5: compute qij according to Eq. (4)
6: for i = 1 to N do
7: δi =

∂L̃
∂yi

according to Eq. (7)
8: yi = yi + ηδi
9: end for

10: end for

4. EXPERIMENT

To evaluate the proposed method, we employ vMF-SNE to
visualize spherical data and compare it with the traditional t-
SNE. Since visualization is not a quantitative evaluation, an
entropy-based criterion is proposed to compare the two em-
bedding approaches.

4.1. Simulation data

Since embedding methods concern only data distributions, we
can use simulation data to evaluate the proposal. The basic
idea of the simulation is to sample k clusters of data and ex-
amine if the cluster structure can be preserved after embed-
ding. The sampling process starts from the centers of the k
clusters, i.e., {µi; ||µi|| = 1, i = 1, ..., k}. Although the sam-
pling for different µi is essentially independent, we adopt a
different approach: firstly sample the first center µ1, and then
derive other centers {µi} by randomly selecting a subset of
the dimensions of µ1 and flipping the signs of the values on
these dimensions. By this way, the centers {µi} are ensured
to be separated on the hyper-sphere, which generates a clear
cluster structure associated with the data.

Once the cluster centers are generated, it is easy to sam-
ple the data points for each cluster following the vMF distri-
bution. A toolkit provided by Arindam Banerjee and Suvrit
Sra was adopted to conduct the vMF sampling2. In this work,
the dimension of the data is set to 50, and 800 data points are
sampled in total. The concentration parameter κ used in the
sampling also varies, in order to investigate the performance
of the embedding approaches in different overlapping condi-
tions.

4.2. Visualization test

The first experiment visualizes the spherical data with vMF-
SNE. The perplexity P is set to 40, and the value of κ in
the embedding space is fixed to 2 (see Algorithm 1). The
data are generated following vMF distributions by setting the
scattering parameter κ to different values. Fig. 1 presents the
embedding results on 3-dimensional spheres with vMF-SNE,
where the two pictures show the results with κ=15 and κ=40
respectively. Note that the κ here is used in data sampling,
neither the κ used to model the original data (which is com-
puted from P for each data point) nor the κ used to model the
embedding data (which has been fixed to 2). It can be seen
that vMF-SNE indeed preserves the cluster structure of the
data in the embedding space, and not surprisingly, data gen-
erated with a larger κ are more separated in the embedding
space.

For comparison, the same data are embedded with t-SNE
in 2-dimensional space. Note that it is fair to compare 2-
dimensional t-SNE and 3-dimensional vMF-SNE since the
latter essentially embeds data on a 2-dimensional spherical
surface. The tool provided by Laurens van der Maaten is used
to conduct the embdding3, where the perplexity is set to 40.
The comparative results are shown in Fig. 2 and Fig. 3 for
data generated by setting κ=15 and κ=10 respectively. It can

2http://suvrit.de/work/soft/movmf
3http://lvdmaaten.github.io/tsne/
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Fig. 1: The 3-dimensional embedding with vMF-SNE, with
data generated following a vMF distribution by setting κ =
15 (left) and κ = 40 (right). The original dimension is 50,
and there are 4 clusters, each of which is represented by a
particular color.

−1

0

1

−1
−0.5

0
0.5

1

−1

0

1

−60 −40 −20 0 20 40 60
−60

−40

−20

0

20

40

60

Fig. 2: The 3-dimensional embedding with vMF-SNE (left)
and 2-dimensional embedding with t-SNE (right). The data
was generated following a vMF distribution by setting κ =
15.
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Fig. 3: The 3-dimensional embedding with vMF-SNE (left)
and 2-dimensional embedding with t-SNE (right). The data
was generated following a vMF distribution by setting κ =
10.

be observed that when κ is large (Fig. 2), both vMF-SNE and
t-SNE perform well and the cluster structure is clearly pre-
served. However when κ is small (Fig. 3), vMF-SNE shows
clear superiority. This suggests that t-SNE is capable to model
spherical data if the structure is clear, even if the underling
distribution is non-Gaussian; however in the case where the
structure is less discernable in the high-dimensional space, t-
SNE tends to mess the boundary while vMF-SNE still works
well.

4.3. Entropy and accuracy test

Visualization test is not quantitative. For further investiga-
tion, we propose to use the clustering accuracy and entropy
as the criteria to measure the quality of the embedding. This
is achieved by first finding the images of the cluster centers,

Table 1: Results of Entropy and Accuracy

4 Clusters Entropy Accuracy
κ t-SNE vMF-SNE t-SNE vMF-SNE
10 0.6556 0.5922 42% 64.13%
20 0.4725 0.4187 85.38% 92.63%
30 0.3804 0.3676 97.38% 98.5%
40 0.3485 0.3466 99.75% 99.95%
16 Clusters Entropy Accuracy
10 0.3152 0.2975 15.5% 16.88%
20 0.2812 0.2608 38.25% 40.75%
30 0.2312 0.2383 68.25% 55.13%
40 0.1964 0.2187 91.25% 60.63%

and then classifying the data according to their distances to
the centers in the embedding space. The classification accu-
racy is computed as the proportion of the data that are cor-
rectly classified. The entropy of the i-th cluster is computed
asH(i) =

∑k
j=1 c(i, j)ln(c(i, j)) where c(i, j) is the propor-

tion of the data points generated from the j-th cluster but are
classified as the i-th cluster in the embedding space. The en-
tropy of the entire data set is computed as the average ofH(i)
over all the clusters. Table 1 presents the results. It can be ob-
served that in the case of 4 clusters, vMF-SNE achieves lower
entropy and better accuracy than t-SNE when κ is small. If κ
is large, both the two methods can achieve good performance,
for the reason that we have discussed.

In the case of 16 clusters, it is observed that vMF-SNE
outperforms t-SNE with small κ values (large overlaps). This
seems an interesting property and demonstrates that using the
matched distribution (vMF) is helpful to improve embedding
for overlapped data. However, with κ increases, vMF-SNE
can not reach a performance as good as that obtained by t-
SNE. A possible reason is that the large number of clusters
leads to data crowding which can be better addressed with the
long-tail Student t-distribution used by t-SNE. Nevertheless,
this requires further investigation.

5. CONCLUSIONS

A vMF-SNE algorithm has been proposed for embedding
high-dimensional spherical data. Compared with the widely
used t-SNE, vMF-SNE assumes vMF distributions and cosine
similarities, hence suitable for spherical data embedding. The
experiments on a simulation data set demonstrated that the
proposed approach works fairly well. Future work involves
studying long-tail vMF distributions to handle crowding data,
as t-SNE does with the Student t-distribution.
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