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ABSTRACT

Differential privacy is a strong, cryptographically-motivated
definition of privacy that has recently received a significant
amount of research attention for its robustness to known at-
tacks. The principal component analysis (PCA) algorithm is
frequently used in signal processing, machine learning and
statistics pipelines. In this paper, we propose a new algorithm
for differentially-private computation of PCA and compare
the performance empirically with some recent state-of-the-art
algorithms on different data sets. We intend to investigate the
performance of these algorithms with varying privacy param-
eters and database parameters. We show that our proposed al-
gorithm, despite guaranteeing stricter privacy, provides very
good utility for different data sets.

Index Terms— Differential privacy, dimensionality re-
duction, principal component analysis

1. INTRODUCTION

Analyzing private or sensitive data using machine learning
and signal processing algorithms is a topic of increasing
importance. Standard data analytics pipelines often use the
singular value decomposition (SVD), or principal component
analysis (PCA) to pre-process high-dimensional data by pro-
jecting it onto a lower dimensional subspace spanned by the
singular vectors of the second-moment matrix of the data. For
example, to save on the computational complexity of train-
ing a classifier, the algorithm may first project the data into
lower dimension. In this paper, we propose an algorithm that
approximates PCA while satisfying differential privacy [1].

Differential privacy (DP) measures privacy risk in terms
of the probability of identifying individual data points in a
data set from the results of computations performed on that
data. There are several generic approaches to making DP ap-
proximations of algorithms [2, 3], including PCA. Input per-
turbation [4, 5] adds noise to the data prior to computing the
SVD, whereas output perturbation [1] adds noise to the out-
put of the desired algorithm. The Analyze Gauss algorithm
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of Dwork et al. [5] adds Gaussian noise to the data second-
moment matrix. Hardt and Price [6] proposed a differen-
tially private version of the power method that runs in near-
linear time. Chaudhuri et al. [7] proposed a method based
on the exponential mechanism [8], which samples random
orthonormal basis using a utility function. Their implemen-
tation uses Markov Chain Monte Carlo (MCMC) sampling
and is hence only approximate. Kapralov and Talwar [9] also
used the exponential mechanism but sampled vectors sequen-
tially; it runs in polynomial time but is intractable to imple-
ment for high dimensional data. Most recently, Sheffet [10]
proposed adding noise from Wishart distribution to achieve
differentially-private linear regression.

In this paper, we propose a new algorithm, SN, for dif-
ferentially private principal component analysis. Our method
also adds Wishart noise, but with parameters chosen to yield
a better privacy guarantee. We compare SN with others [5–7]
on the problem of computing and publishing a private or-
thonormal subspace using synthetic and real data sets. We
analyze the variation of utility with different privacy level,
number of samples and some other key parameters. Our re-
sults show that for strong privacy guarantees (ε, 0), SN out-
performs other methods, and that weaker privacy guarantees
(ε, δ) can yield significantly higher utility. We also show that
despite guaranteeing stronger privacy, SN can achieve simi-
lar utility level as algorithms with weaker privacy guarantees.
Due to space constraints, some details are deferred to the jour-
nal version of this work.

2. PROBLEM FORMULATION

Consider a dataset D = {xi ∈ Rd : i = 1, 2 . . . , n} with
n data samples corresponding to n individuals. We further
assume ‖xi‖2 ≤ 1. Let X = [x1, x2, . . . , xn] be the d × n
data matrix whose i-th column is xi. Define the d×d positive
semi-definite second-moment matrix A:

A =

n∑
i=1

xix
>
i = XX>. (1)

For the setup of this paper, we have ‖ 1nXX
>‖F ≤ 1,

where ‖·‖F denotes the Frobenius norm. We define two
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data sets to be neighbors if they differ in a single data
point (column). If X = [x1, x2, . . . , xn−1, xn] and X ′ =
[x1, x2, . . . , xn−1, x

′
n] are matrices corresponding to two

neighboring data sets, then A = XX> and A′ = X ′X ′>

satisfy the condition ‖A − A′‖2 ≤ 1. We will also use the
relation ‖A‖2 ≤ ‖A‖F between the Frobenius norm and the
L2 norm.

The Schmidt approximation theorem [11] characterizes
the rank-k matrix Ak that minimizes the difference ‖A −
Ak‖F and shows that the minimizer can be found by taking
the singular value decomposition of A:

A = V ΛV >, (2)

where without loss of generality we assume Λ is a diago-
nal matrix diag(λ1(A), λ2(A), . . . , λd(A)) with λ1(A) ≥
λ2(A) ≥ . . . ≥ λd(A) ≥ 0 and V is a matrix of eigenvectors
corresponding to the eigenvalues. The top-k PCA subspace
of A is the matrix Vk(A) = [v1, v2, . . . , vk], where vi is the
i-th column of V . Given Vk(A) and the eigenvalue matrix
Λ, we can form an approximation Ak = Vk(A)ΛkVk(A)>

to A, where Λk contains the k largest eigenvalues in Λ. For
a d × k matrix V̂ with orthonormal columns, the quality of
V̂ in approximating Vk(A) can be measured by the captured
variance of A as

q(V̂ ) = tr(V̂ >AV̂ ). (3)

The V̂ , which maximizes q(V̂ ) has columns equal to vi for
i = 1, 2, ..., k, corresponding to the top-k eigenvectors of A.

In this paper we study algorithms that approximate the
top-k PCA subspace Vk(A) while also guaranteeing differen-
tial privacy [1]. An algorithm A (B) taking values in a set T
provides (ε, δ)-differential privacy if

Pr(A (D) ∈ S) ≤ exp(ε)Pr(A (D′) ∈ S) + δ, (4)

for all measurable S ⊆ T and all data sets D and D′ differ-
ing in a single entry. This definition essentially states that the
probability of the output of an algorithm is not changed sig-
nificantly if the corresponding database input is changed by
just one entry. Here ε and δ are privacy parameters, where
low ε and δ ensure more privacy. It should be noted here
that the parameter δ can be interpreted as the probability that
the algorithm fails. Therefore, an (ε, 0)-differentially private
algorithm guarantees much stronger privacy than an (ε, δ)-
differentially private algorithm, where δ > 0. We refer to
(ε, 0) differential privacy as ε-differential privacy. For more
details, see the recent survey [2] or monograph [12].

3. ALGORITHMS

Differentially private algorithms for approximating V (A),
the matrix containing the eigenvectors of A, either guarantee
(ε, δ) or ε-differential privacy. Some of them approximate

Algorithm 1: SN Algorithm

Input : Data matrix X ∈ Rd×n (with n samples of
dimension d, each sample has bounded norm),
privacy parameter ε

1 A← XX>

2 Generate d× p matrix Z = [z1, z2, . . . , zp] where
zi ∼ N (0, 1

2εI) and p = d+ 1

3 Â← A+ ZZ>

Output: The private second-moment matrix Â. The
private orthonormal basis matrix can be
calculated by computing SV D(Â)

V (A) by approximating A and then taking the SVD of the
approximation Â. We propose a method for approximating A
under ε-differential privacy.
Proposed Symmetric Noise (SN) Algorithm. Let zi be a
d-dimensional random vector drawn according to N (0,Σ),
where Σ = 1

2εI . We generate p = d+ 1 iid samples and form
a d×p noise matrix Z = [z1, z2, . . . , zp]. The random matrix
E = ZZ> is sample from a Wishart Wd(Σ, p) distribution
with p degrees of freedom [13]. Our algorithm outputs Â =
A+ E as a private approximation to A.

Theorem 1 (Privacy of SN Algorithm) Algorithm 1 com-
putes an ε-differentially private approximation to A.

Proof. The Wishart Wd(Σ, p) with distribution Σ = 1
2εI

and p = d+ 1 has density

fE(E) ∝ (det(E))
p−d−1

2 exp

(
−1

2
tr
(
Σ−1E

))
∝ exp (−ε tr(E)) ,

where the second proportionality is achieved by substituting
the parameters Σ and p. Consider two neighboring databases
with second moment matricesA andA′ and an output Y from
SN. The density of Y is fE(Y −A) under inputA and fE(Y −
A′) under input A′. Therefore, using the assumption that the
data is bounded,

fE(Y −A)

fE(Y −A′)
=

exp (−ε tr(Y −A))

exp (−ε tr(Y −A′))
= exp (−ε tr(A′ −A))

= exp
(
ε tr
(
xnx

>
n − x′nx′>n

))
≤ exp (ε) .

Thus, the addition of the positive semi-definite noise matrix
E makes the algorithm ε-differentially private.

Theorem 2 (SN Approximation Guarantees) If Vk is the
top-k right singular subspace of X and V̂k is the private
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subspace derived from computation of SVD on the output of
Algorithm 1, then

‖V̂ >k′X‖2F ≥ ‖V >k X‖2F +O

(
k

(
d

4ε2

)2
)

‖VkV >k − V̂k′ V̂ >k′ ‖2 ≤ O

(
d

4ε2

λk − λk+1

)

‖A− Â(k)‖2 ≤ ‖A−Ak‖2 +O

(
d

4ε2

)
.

Due to space limitations, we present only the sketch of the
proof of the first inequality. We assume that λk − λk′+1 =

ω(
√
d

2ε ) for k′ ≥ k. Then it follows that tr(V̂ Tk′AV̂k′) =

tr(V Tk AVk) + tr
(

(P − P̂ )E
)

, where P = VkV
>
k and

P̂ = V̂k′ V̂
>
k′ . Using Von Neumann’s trace inequality, we have∣∣∣tr((P − P̂ )E

)∣∣∣ ≤ √
2k′‖E‖2

(
‖PP̂⊥‖2 + ‖P̂P⊥‖2

)
,

where ⊥ represents the orthogonal complement. Using the
sin-θ theorem [14] and Weyl’s inequality we have ‖PP̂⊥‖2 =

O
(

d/4ε2

λk−λk′+1

)
. The inequality guarantee of captured vari-

ance follows from this.
In a simultaneous, independent work, Sheffet also proposed
addition of Wishart noise to preserve differential privacy in
the context of linear regression [10]. Our proposed method
uses specific parameters to guarantee ε-differential privacy
rather than his (ε, δ)-differential privacy. This distinction can
be important for specific applications.
Previous algorithms. We empirically compare SN with
three other algorithms: the Analyze Gauss (AG) algorithm
of Dwork et al. [5], the private power method (PPM) of
Hardt and Price [6], and the Private PCA (PPCA) algorithm
of Chaudhuri et al. [7]. All of these methods have favor-
able theoretical guarantees but limited empirical validation.
The AG method generates a symmetric noise matrix E of
i.i.d. Gaussian entries with distribution N (0,∆2

ε,δ) and
publishes A + E, where ∆2

ε,δ guarantees (ε, δ)-differential
privacy. Unlike AG, our SN algorithm preserves the covari-
ance structure of the perturbed matrix: SN’s perturbation can
be thought of as adding fictitious data points to X , whereas
the output of AG may not even be positive semi-definite.
The PPM algorithm adds noise in the iterations of the power
method; this noise can be chosen to guarantee ε- or (ε, δ)-
differential privacy. An open question is how to choose the
number of iterations L. We chose the suggested scaling
L = O

(
σk

σk−σk+1
log(d)

)
, where σi are the singular values

of the data matrixX sorted in descending order. The variance
of the Gaussian or Laplace noise to be added in each step
of the power iteration depends on a parameter χ, which we

set to 1
ε

√
4kL log( 1

δ ) for δ > 0 and 10
ε kL
√
d for δ = 0.

Finally, the PPCA algorithm samples a random orthonormal
basis V̂ using the exponential mechanism [8] with the utility

function (3), which is a sample from the matrix Bingham
distribution [15]. Our implementations of these algorithms
are available [16].

4. EXPERIMENTAL RESULTS

Because these algorithms have a large parameter space, we fo-
cused on measuring how well the outputs of these algorithms
approximate the true PCA subspace V (A). Here we focus on
the energy captured by the privately generated subspace. We
studied the dependence of the energy on the privacy parame-
ter ε and the sample size n, as well as the utility of the private
subspace as preprocessing for a classification task.

We performed experiments using three data sets: a syn-
thetic data set (d = 100, n = 60000, k = 10) generated with
a pre-determined covariance matrix, the Covertype dataset
(d = 54, k = 10) [17] (COVTYPE) and the MNIST (d = 784,
k = 50) [18]. For the latter two we selected 20000 and 10000
samples at random, respectively, for our experiments. We pre-
processed the data by subtracting the mean (centering) and
normalizing the data with the maximum L2 norm in each set
to enforce the condition ‖xi‖2 ≤ 1. We picked the reduced
dimension k so that the top-k PCA subspace Vk(A) has cap-
tured variance q(Vk(A)) that is at least 90% of q(V (A)). In
all cases we show the average performance over 10 runs of
each algorithm.
Dependence on Privacy Parameter ε. We first explored the
privacy-utility tradeoff between ε and the captured variance.
For the additive-noise algorithms, the standard deviation of
the noise (Gaussian or Laplace) is inversely proportional to
ε – smaller ε means more noise and lower privacy risk. For
PPCA, an increase in ε means skewing the probability den-
sity function more towards the optimal subspace. In Fig. 1,
we show the variation of percentage captured energy (with re-
spect to SVD) with different values of ε. For all the data sets,
we observed that as ε increases (higher privacy risk), the cap-
tured variance increases. The AG method vastly outperforms
the PPM method; we believe this is because the noise stability
for PPM may only hold for larger data sets or larger ε. Our
new SN method also outperforms existing methods (PPM and
PPCA) and for large enough ε it matches the performance of
AG, despite providing a stronger privacy guarantee.
Dependence on Number of Samples n. Intuitively, it should
be easier to guarantee smaller privacy risk ε and higher util-
ity q(·) when the number of samples is large. Figure 2 shows
how the captured variance increases as a function of sample
size for the different algorithms. The variation with the sam-
ple size reinforces the results seen earlier with variation in ε:
AG and SN have the best performance for δ > 0 and δ = 0,
respectively, and PPM appears to suffer from too much noise.
Interestingly, AG, SN, and PPCA all show a steep improve-
ment with sample size, perhaps indicating a relationship be-
tween the convergence of the sample covariance as well as its
private approximation.
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(a) Synthetic data (with δ=0.1)
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(b) COVTYPE data (with δ=0.02)
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Fig. 1. Variation of the captured variance with different ε for
(a) Synthetic data and (b) COVTYPE data
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(a) Synthetic data (with ǫ=0.1, δ=0.02)
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(b) COVTYPE data (with ǫ=0.1, δ=0.02)
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Fig. 2. Variation of the captured variance with different num-
ber of data samples n for (a) synthetic data, (b) COVTYPE
data

Classification Performance. We also wanted to see how
useful the differentially private subspace V̂ was as a prepro-
cessing step for a classification task. We projected the d-
dimensional data samples onto the private k-dimensional sub-
space V̂ . Using an original training dataset Dtr = {(xi, yi) ∈
Rd × {−1, 1} : i = 1, 2, . . . , n} and a private approximation
V̂ to Vk(A) we created a projected data set {(V̂ >xi, yi) ∈
Rk × {−1, 1} : i = 1, 2, . . . , n} and trained a support vec-
tor machine (SVM) classifier to find the weight vector f ∈
Rk for a linear classifier sgn(f>xki ), where xki is the i-th k-
dimensional sample. For this experiment, we formed our data
sets slightly differently. The synthetic data set (d = 100, n =
5000) was generated i.i.d. Gaussian with one of two differ-
ent means corresponding to the label y and a fixed covariance
matrix with bounded spectral norm. The COVTYPE data set
has 7 classes: we chose class 6 and class 7, with 10000 ran-
dom samples from each class. Finally, for the MNIST data
set, we chose two digits - digit 3 and digit 7, with 5000 sam-
ples selected randomly. We solved the optimization problem
for classification using a built-in SVM classifier svmtrain
in MATLAB. Table 1 shows the percentage errors of classifi-
cation on the three data sets for all the three algorithms. We
performed the experiments keeping the test sample size fixed

Table 1. Percentage error in classification with varying train-
ing sample size

SYNTHETIC COVTYPE MNIST

|Dtr| = n 4000 6000 4000 6000 4000 6000

SVD 5.65 5.80 0.025 0.025 0.575 0.25

AG 5.80 5.75 16.80 5.775 3.025 3.125

PPM 9.00 9.05 22.00 15.175 3.10 2.55

PPCA 6.375 6.125 31.85 19.875 2.725 2.80

SN 7.50 7.075 7.225 0.35 2.50 2.00

at 4000 samples and varying the training sample size. Judg-
ing by the recognition accuracy compared to COVTYPE and
MNIST, we note that the synthetic data set is a bit more dif-
ficult than the COVTYPE and MNIST due to the fact that the
classes have comparatively smaller separation. For a partic-
ular privacy level (i.e. fixed ε and δ) with sufficient training
samples, the AG algorithm performed consistently well. On
the COVTYPE and MNIST data sets, our proposed SN al-
gorithm outperformed all other private methods, even those
with (ε, δ) guarantees. These observations certainly point out
that the proposed algorithm provides a private subspace that
not only can capture a significant amount of variance from
the data second-moment matrix but also suited very well for
projection and classification purposes.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new algorithm SN for differen-
tially private PCA. Comparing private feature learning meth-
ods may reveal their robustness to perturbations. We empir-
ically compared SN algorithm with three recent state-of-the-
art competitors on three different data sets. In general, the
AG and the SN algorithms had the best performance among
(ε, δ) and ε-private methods, respectively. In some regimes
and on some data sets, SN achieved as much utility as AG,
even though SN provides stricter privacy guarantee. We fur-
ther examined the usefulness of the produced subspace for
classification using SVM and showed that SN even outper-
formed non-private SVD for one data set. For data sets with
a large eigengap, the SN algorithm provided a very close ap-
proximation to the subspace from SVD. Overall, SN and AG
algorithms provided the best performance across data sets and
privacy parameters. Our initial results suggest that the asymp-
totic guarantees for differentially private algorithms may not
always reflect their empirical performance. We also note that
because differential privacy is closed under post-processing,
other feature extraction and classification techniques that use
the second-moment matrix can use SN or AG to provide ε or
(ε, δ)-differential privacy.
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