
COMBINING SOFT DECISIONS OF SEVERAL UNRELIABLE EXPERTS

Jacob Goldberger

Engineering Faculty, Bar-Ilan University, Israel
jacob.goldberger@biu.ac.il

ABSTRACT

In this study we address the problem of integrating informa-
tion from several experts with unknown levels of expertise. In
the usual setup each expert expresses her opinion by choosing
one of the options. Here we assume that each expert provides
her opinion in a soft manner via a distribution on the possi-
ble options. The goal is to find the reliability level of each
expert and to optimally integrate their information. We de-
velop an estimation algorithm which is an instance of the EM
algorithm and an efficiently computed approximation of the
E-step. Finally we present simulations that demonstrate the
improved performance of the proposed approach.

Index Terms— Unreliable experts, EM algorithm, crowd-
sourcing

1. INTRODUCTION

In this study we address the problem of integrating informa-
tion from several experts with unknown levels of expertise.
In the standard setup there is a set of questions each being as-
sociated with an unobserved correct answer. We direct these
questions to a set of experts. When a question is assigned
to an expert, the answer we get may be inaccurate depend-
ing on his or her level of expertise. In this case the challenge
is to find the correct answer and, as a by-product, to assess
the reliability of each expert. This problem is closely related
to monitoring crowdsourcing systems such as Amazon Me-
chanical Turk. Crowdsourcing is an effective paradigm for
human-powered problem solving which is now in widespread
use for large-scale data-processing tasks [5][4].

A principled way to address this problem is to build gen-
erative probabilistic models for the expert decision processes,
and assign labels using standard inference tools. The ex-
pert reliability is viewed as an unknown parameter. A line
of works applied the EM algorithm to this task incorporat-
ing either simple or more complicated generative models (e.g.
[8][2][7][10][1][9][6]). Another line of works applied spec-
tral methods to this problem [3].

In this study we address a more general instance where the
experts do not provide an explicit answer or, equivalently, we
do not know the expert’s exact opinion. Instead, each expert
splits his vote among the possible answers. The opinion of

an expert is thus provided in the form of a distribution over
the possible answers. This situation occurs naturally when
the expert is an automatic probabilistic classifier such as a
logistic regression or a neural network.

In this work we first generalize the classical EM algorithm
to the case where even the so-called observed random variable
is not completely observed. Then we utilize this EM exten-
sion to our problem of integrating a set of unreliable soft ex-
perts. Finally we apply our approach to simulated data and
show its improved performance.

2. COMBINING SEVERAL EXPERTS

In this study we focus on the problem of combining opinions
from several unreliable experts where the opinion is in the
form of a distribution on the possible options. We start by
reviewing the EM based approach for the simpler and stan-
dard case where the experts provide explicit answers. Assume
x1, ..., xn are random variables that are uniformly sampled
from a finite set A. The values of x1, ..., xn are not directly
observed. Instead, there is a set of m ‘experts’ and the opinion
of expert i on the value xj is denoted by yij ∈ A. We assume
that each expert i is associated with a reliability probability θi
of providing the correct answer. To simplify the modeling we
further assume that when the expert makes a wrong decision
he samples uniformly from the |A| − 1 alternatives:

p(yij |xj = a; θi) =


θi if yij = a

1−θi
|A|−1 if yij ̸= a

, a ∈ A

(1)
Let yj = {y1j , ..., ymj} be the opinions, independently pro-
vided by the m experts, on the value of xj .

p(yj |xj = a; θ) =
m∏
i=1

p(yij |xj = a; θi) (2)

such that θ = {θ1, ..., θm}. Given the experts’ opinions we
can compute the posterior distribution of the possible values
of xj . Applying Bayes’ rule, we obtain:

p(xj=a|yj ; θ) =
p(yj |xj = a; θ)∑
b∈A p(yj |xj = b; θ)

, a ∈ A (3)

2334978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



and from that we can also extract a hard decision:

x̂j = argmax
a∈A

p(xj=a|yj ; θ). (4)

If all the experts have the same reliability, then x̂j is simply a
majority voting decision.

In the case where the reliability parameters are unknown,
our goal is to find them (and the value of the unobserved
r.v.) using the given expert information set (yij). The log-
likelihood function is:

L(θ) =
n∑

j=1

log p(yj ; θ)

=

n∑
j=1

log(
1

|A|
∑
a∈A

p(yj |xj = a; θ)).

(5)

Since x1, ..., xn are hidden variables and θ1, ..., θm are un-
known parameters, we utilize the EM algorithm to find the
maximum-likelihood parameters. The EM algorithm handles
the parameter estimation task by iterating between the E and
M steps. The E-step is:

wj(a) = p(xj=a|yj ; θ0) =
p(yj |xj = a; θ0)∑
b∈A p(yj |xj = b; θ0)

(6)

j = 1, ..., n, a ∈ A

where θ0 is the current values of the parameter-set. The M-
step is:

θi =
1

n

n∑
j=1

wj(yij), i = 1, ...,m (7)

The updated θi is the expected number of the times that ex-
pert i provided the correct decision. The EM algorithm is
notoriously known to get stuck in a local maximum point of
the likelihood function. Hence, it is important to choose a
meaningful way to initialize the model’s parameters. A rea-
sonable initialization of the EM algorithm is setting all relia-
bility parameters to have the same value (e.g. θi = 0.7 for all
i = 1, ...,m).

3. EXTENSION OF THE EM ALGORITHM TO SOFT
OBSERVATION VALUES

In this section we introduce an extension of the classical EM
algorithm that can handle soft observed information. We start
with a brief description of the EM algorithm. Assume y is
an observed sample from a random variable Y whose density
function is p(y; θ) such that θ is an unknown parameter. The
goal of the EM algorithm is to facilitate the maximum likeli-
hood parameter estimation:

θML = argmax
θ

log p(y; θ) (8)

by introducing so-called a hidden random variable, denoted
by X , and by introducing a joint distribution p(x, y; θ) such
that the given marginal distribution p(y; θ) satisfies p(y; θ) =∑

x p(x, y; θ). The EM algorithm is an iterative procedure
where each iteration is composed of two steps. In the E-step
we compute the following conditional expectation:

Q(θ, θt) =
∑
x

p(x|y; θt) log p(x, y; θ)

= Ep(x|y;θt)(log p(x, y; θ)|Y = y)

(9)

where θt is the current estimation of the parameter θ. In the
M-step we compute an updated parameter estimation by solv-
ing the following maximization problem:

θt+1 = argmax
θ

Q(θ, θt). (10)

The success of the EM algorithm is based on the fact that in
many cases solving the maximization problem (10) is much
easier than directly solving the maximum-likelihood problem
(8). A major feature of the EM algorithm is a monotone in-
crease of the likelihood function, i.e., p(y; θt) ≤ p(y; θt+1).

Assume now that y is not fully observed. Instead we
are only given a distribution q(y) on the possible values that
the r.v. Y can obtain. We can view this situation as though
we only receive a noisy (soft) information about the sampled
value of the r.v. y. We still want to estimate the unknown pa-
rameter θ and the value of the hidden r.v. x. The cost function
we aim to optimize is:

θMKL = argmax
θ

∑
y

q(y) log p(y; θ)

= argmin
θ

KL(q(y)||p(y; θ))
(11)

where KL is the Kullback-Leibler divergence and θMKL is
the minimum KL parameter estimation. Note that if y is com-
pletely known (i.e. q(y) is a delta distribution) then this cost
function coincides with the likelihood function that is maxi-
mized by the standard EM algorithm. Maximum likelihood
estimation is known to be identical to the minimization of KL
divergence between the empirical distribution and the model
distribution. Our cost function for soft observations (11) fol-
lows this interpretation.

We next extend the EM algorithm to the soft-observation
situation where instead of observing y, we are only given a
distribution q(y). We dub this EM extension as the Soft Ob-
servation EM (SOEM) algorithm. It can be easily verified
that:∑

y

q(y) log p(y; θ) =
∑
y,x

q(y)p(x|y; θ) log p(x, y; θ)

p(x|y; θ)
.

(12)
The concavity of the log() function (or equivalently the
Jensen inequality) implies that for every conditional dis-
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tribution r(x|y):∑
y

q(y) log p(y; θ) ≥
∑
y,x

q(y)r(x|y) log p(x, y; θ)

r(x|y)
. (13)

Combining Eq. (12) and Eq. (13) we obtain:

θMKL = argmax
θ

max
r

∑
y,x

q(y)r(x|y) log p(x, y; θ)

r(x|y)

= argmin
θ

min
r

KL(r(x|y)q(y)||p(x, y; θ)).
(14)

Approximating the double minimization in Eq. (14) with
an alternating minimization we get the SOEM algorithm. In
the E-step we compute the following conditional expectation.

Q(θ, θt) =
∑
y

q(y)
∑
x

p(x|y; θt) log p(x, y; θ)

= Eq(y)p(x|y;θt)(log p(x, y; θ)).

(15)

Note that unlike the standard EM where the expectation is
based on the conditional distribution p(x|y; θt), here the
expectation is performed based on the joint distribution
q(y)p(x|y; θt). The M-step of the SOEM remains the same:
θt+1 = argmaxθ Q(θ, θt). The alternating minimization
view of the SOEM algorithm implies that it monotonically
improves the estimated parameter θ in the sense that:

KL(q(y)||p(y; θt)) ≥ KL(q(y)||p(y; θt+1)).

Once we have found the ML estimation of the model pa-
rameters θ we can reconstruct the hidden random variable x:

p̂(x) =
∑
y

q(y)p(x|y; θ). (16)

4. A SOFT VERSION OF EXPERT OPINIONS

We next extend the problem of combining the opinions of sev-
eral experts to the case where the experts provide their opin-
ions in the form of a distribution over the set of possible de-
cisions A. Assume there are m experts who provide opinions
on the values of the x1, ...xn which are not directly observed.
The experts do not provide hard decisions. Instead, each ex-
pert splits his vote among the possible |A| values. For exam-
ple, assume that y is obtained as an output of a probabilistic
classifier such as a logistic regression or a neural network.
The opinion of expert i on the value of xj is thus provided in
the form of a distribution:

qij(b) = p(yij = b), b ∈ A (17)

Assuming the experts’ opinions are independently generated,
we use the following notation for the soft opinions on the val-
ues of xj :

qj(a) = qj(a1, ..., am) =
m∏
i=1

qij(ai), a =∈ Am. (18)

Following the definition of the SOEM algorithm in the previ-
ous section, the cost function L(θ) we want to optimize is:

n∑
j=1

∑
a∈Am

qj(a) log(
1

|A|
∑
b∈A

p(yj = a|xj = b; θ)). (19)

The optimal parameter, therefore, is:

θMKL = argmax
θ

L(θ) = argmin
θ

n∑
j=1

KL(qj ||p(yj ; θ)).

(20)
The optimal parameter can be found by applying the

SOEM algorithm defined above. The auxiliary function for
this case is:

Q(θ, θ0) =

n∑
j=1

∑
a∈Am

qj(a)
∑
b∈A

p(xj = b|yj = a; θ0)×

m∑
i=1

(1{ai=b} log θi + 1{ai ̸=b} log(
1− θi
|A| − 1

))

where the term p(xj = b|yj = a; θ0) is computed using Eq.
(3). The E-step is:

wj(i) =
∑

a∈Am

qj(a)p(xj = ai|yj = a; θ0) (21)

j = 1, ..., n, i = 1, ...,m

wj(i) is the posterior probability that expert ‘i’ provided the
correct decision on the value of xj . The M-step is:

θi =
1

n

n∑
j=1

wj(i), i = 1, ...,m. (22)

Note that the complexity of computing the expressions
wj(i) in the E-step is exponential in the number of experts.
Hence, in the case where there are many experts or the set A
is large, a direct computation of the E-step is not feasible. We
can approximate the expectation wj(i) = E{qj(a)}p(xj =

ai|yj = a; θ0) by sampling a1, ..., ak ∈ Am from the dis-
tribution qj . Note that sampling from the distribution qj is
easy since it is a joint distribution of independent r.v. (see Eq.
(18)). Using the law of large numbers, we can replace the
expectation by a sample average:

wj(i) ≈
1

k

k∑
t=1

p(xj = ati|yj = at; θ0). (23)

Once we have found the model parameter-set θ we can
compute the posterior distribution of xj based on the experts’
opinions.

p(xj = b|yj ; θ) =
∑

a∈Am

qj(a)p(xj = b|yj = a; θ), b ∈ A

(24)
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In the case where an exact computation of the posterior dis-
tribution (24) in not feasible, we can use sampling methods,
similar to the one described above to approximately compute
the posterior distribution. Finally, the hard-decision predic-
tion is:

x̂j = argmax
b∈A

p(xj = b|yj ; θ). (25)
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Fig. 1. Algorithm performance as a function of the number of
experts.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method for com-
bining soft expert decisions we conducted the following sim-
ulation. We set the label-set A to be {0, 1, 2}. We uniformly
sampled n = 200 ‘correct’ labels x1, ..., xn ∈ A. For each
expert i we chose a reliability parameter θi by sampling θi
uniformly from the interval [0.4, 0.7]. There are many ways
to simulate a soft decision procedure. We used the following
scheme: for each object item j and expert i, we first sampled
a multinomial distribution Uij from the uniform distribution
over the standard (|A| − 1)-simplex (a.k.a. the flat Dirichlet
distribution). We next sampled an expert opinion yij using
Eq. (1). Then the soft-decision of expert i on item j is ob-
tained as:

qij(a) = Uij((yij + z − a) mod |A|), a ∈ A

such that z ∈ A is sampled from Uij . By using the mod
operation we assume that A = {0, ..., |A| − 1}.

In addition to the proposed method, denoted as the soft-
EM, we implemented a simplified decision method that ig-
nores the reliability differences among the experts. The soft-
majority procedure, denoted by ‘soft-maj’ is defined as fol-
lows:

x̂j = argmax
a∈A

(
m∑
i=1

qij(a))

We also implemented algorithms based on a hard-decision
process of the given soft-decision information. For each xj

let
ŷij = argmax

a∈A
qij(a)

be the most probable value of xj according to expert i. We
applied the EM procedure, described in Section 2 on this hard
decision data and also a majority voting decision:

x̂j = argmax
a∈A

(
m∑
i=1

1{ŷij=a}).

We denote these two methods ‘hard-EM’ and ‘hard-maj’ re-
spectively.

For each algorithm we measured the relative number of
correct label prediction, i.e.:

Score =
1

n

n∑
i=1

1{x̂j=xj}. (26)

We repeated the entire procedure described above 100 times.
The average score as a function of the number of experts is
shown in Fig. 1. Fig. 1 indicates that performance signif-
icantly improved by keeping information in a soft form and
the best results were obtained by the proposed method.

To conclude, in this paper we developed an efficiently
computed learning algorithm for integrating decisions from
several unreliable experts. We showed the improved per-
formance of the proposed approach compared to simplified
methods that do not use the whole information. One possible
future research direction would be to integrate the proposed
algorithm with a classifier training algorithm (e.g. deep neural
network) where the labeling is provided by a set of unreliable
experts.
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