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Abstract—In this paper, a novel noise-robust recognition
method for high-resolution range profile (HRRP) data is proposed
based on target scatterer pattern to enhance its recognition
performance under the test condition of low SNR. The target
dominant scatterers are first extracted based on the scattering
center model of complex HRRP data via the orthogonal matching
pursuit (OMP) algorithm to realize noise reduction. Then a
scatterer matching recognition algorithm based on Hausdorff
distance (HD) is developed with the magnitudes and locations of
extracted dominant scatterers used as the feature patterns. Ex-
perimental results on the measured HRRP data demonstrate that
the proposed method can improve the recognition performance
under the relatively low SNR condition for both orthogonal and
superresolution representations of scattering center model.

Index Terms—Radar automatic target recognition (RATR),
high-resolution range profile (HRRP), orthogonal matching pur-
suit (OMP), point pattern matching, Hausdorff distance

I. INTRODUCTION

Radar high-resolution range profile (HRRP) has received
intensive attention from the radar automatic target recognition
(RATR) community [1]–[4], [7], [11], [14]. For the RATR
problem, the training data are usually collected under the
condition of high signal-to-noise ratio (SNR) via some coop-
erative measurement experiments or directly via simulations;
while the test samples are usually got in the non-cooperative
circumstance (e.g., at the battle time), where the high SNR
condition cannot be guaranteed due to the long distance
away from the non-cooperative targets [5], [6], [9], [12].
As shown in the experimental results in [4], the recognition
performance dramatically deteriorates under the low test SNR.
Therefore, the noise-robustness of a recognition algorithm is
very important in the real application.

There are usually three approaches to improve the recogni-
tion performance of HRRP data under the low test SNR.

• One is to extract the noise-robust features from the noised
HRRP test samples. As discussed in [12], the bispec-
trum feature of the complex radar signal can suppress
additive disturbances that are described by the symmetric
probability density functions (pdfs). However, the method
above requires a HRRP sequence to get the ensemble
average estimation for the bispectrum feature. Such a
requirement in the test stage will definitely decrease the
recognition speed.
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• Another method is to modify the parameters of statistical
model in high SNR according to the noise level of the test
sample. Based on the additive real-valued noise assump-
tion, [5] proposes a noise-robust modification method for
multitask-learning based factor analysis model. Although
the good noise robustness is achieved via the proposed
method, it suffers from a high computational burden to
adaptively modify the parameters related to the SNR level
in the statistical model.

• The last but also the most natural choice is to remove
the noise component in radar echo before classification.
Wavelet shrinkage is proposed as a denoising method
for HRRP data in [9]. As shown in the experiments in
[9], its performance depends on the approximation-detail
threshold setting and degrades largely in the presence of
severe noise contamination.

The research reported here seeks a denoising method based
on sparse representation of HRRP data and develops a scatterer
matching recognition algorithm for the denoised data. The
scattering coefficients and locations of the dominant scattering
centers are first estimated for a noisy test sample by solving
the sparse optimization problem with the noise level constraint,
then the scatterer matching algorithm based on Hausdorff dis-
tances (HDs) between its dominant scatterers and those from
the training templates is used to distinguish the test sample.
In the experiments based on measured HRRP dataset, the
proposed method shows the inspiring recognition performance
under the relatively low SNR condition for both orthogonal
and superresolution Fourier dictionaries based sparse repre-
sentations.

The remainder of the paper is organized as follows. We
introduce the scattering center model and denoising method
in Section II. The scatterer matching recognition method is
developed in Section III-B. The detailed experimental results
based on measured HRRP data are provided in Section IV,
followed by conclusions in Section V.

II. DENOISING METHOD BASED ON SPARSE
REPRESENTATION

A. Scattering center model for complex HRRP data

According to literature [13], the high-frequency scattering
response of an object is well approximated as a sum of
responses from individual scattering centers. Thus the discrete
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complex frequence responce in baseband is denoted as

y(l) =

K0∑
n=1

ω(n) · exp
(
−j2π

2Rn

c
(l − 1)∆f

)
(1)

where y(l) represents the lth frequency response with l ∈
{1, · · · , L} and L denoting the number of frequency compo-
nents, K0 is the number of scatterers, Rn denotes the radial
distance between the nth scatterer and the radar, ∆f denotes
the frequency interval between the neighboring frequency
components in the discrete frequency response. In (1), the
parameters to be estimated are {K0, {ω(n), Rn}K0

n=1}.
If we assume that each Rn in (1) is an integer multiple of

range resolution ∆R, then (1) can be rewritten as

y(l) =

∑K,rk∈{Rn}
K0
n=1

k=1 w(k) · exp
(
−j2π 2rk

c (l − 1)∆f
)

+
∑K,rk /∈{Rn}

K0
n=1

k=1 w(k) · exp
(
−j2π 2rk

c (l − 1)∆f
)

=

K∑
k=1

w(k) · exp
(
−j2π

2rk
c

(l − 1)∆f

)
(2)

where {rk}Kk=1 denote the locations of range cells with K >
K0 denoting the number of range cells, w(k) represents the
corresponding scattering coefficient from the kth range cell.
For rk = Rn′ with Rn′ ∈ {Rn}K0

n=1, w(k) = ω(n′); otherwise,
w(k) = 0. In this expression (2), K0 equals to the number of
the non-zero elements in vector w, and rk = k ·∆R, then the
parameters to be estimated are only {w(k)}Kk=1.

Let

ϕ(rk) =
[ 1, exp(−j 4π

c rk∆f), exp(−j 4π
c rk2∆f),

· · · , exp(−j 4π
c rk(L− 1)∆f)

]T
Φ = [ϕ(r1),ϕ(r2), · · · ,ϕ(rK)] (3)

Considering the noise component in the real application, the
signal model in (2) can be expressed in a vector-matrix form
as

y = Φw + η (4)

where y = [y(1), y(2), · · · , y(L)]T, η =
[η(1), η(2), · · · , η(L)]T represents the noise component,
w = [w(1), w(2), · · · , w(K)]T denotes the complex HRRP
sample, and |w| is the corresponding real HRRP sample.
When K = L, Φ is a complete orthogonal basis matrix; when
K > L, Φ is a non-orthogonal and redundant dictionary
matrix, then the superresolution representation can be
achieved.

B. Noise reduction via orthogonal matching pursuit algorithm

According to the scattering center model introduced above,
the denoised frequency response can be recovered as ŷ = Φŵ,
where ŵ denotes the estimated scattering coefficients from
the target scatterers. As discussed in [17] for CS-based ISAR
imaging, the target signal can be approximated by the echoes
from the dominant scattering centers which are assumed to
be sparsely distributed in the target, while those from the
weak scattering centers are regarded as the noise components.
Therefore, ŵ can be estimated by solving the following sparse

optimization problem

ŵ = argmin
w

∥y −Φw∥22 s.t. ∥w∥0 = K0 (5)

where ∥·∥2 denotes the l2 norm, ∥·∥0 denotes the l0 norm and
∥w∥0 = K0 represents that there are K0 non-zero elements
in vector w.

According to the sparse representation theory [16], if K0 <
(M−1+1)/2, it is a unique solution of (5). Here M denotes the
maximum correlation between the columns in the basis matrix
Φ. If K0 is known as the prior information, the orthogonal
matching pursuit (OMP) algorithm [8] can be utilized for (5)
to get its approximate solution.

In real application, it is hard to know the number of target
scatterers K0, but the noise power δ in the frequency response
from the noised HRRP sample can be estimated via some
pre-processing methods. Thus it is reasonable to terminate the
OMP algorithm when the residual signal power is lower than
the noise power. In this way, the sparse optimization problem
should be

ŵ = argmin
w

∥w∥0 s.t. ∥y −Φw∥22 < δ (6)

where δ denotes the estimated noise power in the frequency
response, |ŵ| is the denoised HRRP sample.

III. SCATTERER MATCHING RECOGNITION METHOD

As discussed in Section II, the target scattering coefficient
vector ŵ can be learned via the OMP algorithm for a complex
HRRP sample. The indices and absolute values of the nonzero
entries in ŵ indicate the locations and magnitudes of the
target scatterers. In the following, we will develop a scatterer
matching algorithm with the magnitudes and locations of
extracted dominant scatterers used as the feature patterns.

A. Hausdorff distance between point sets

The Hausdorff measure is a well-known method for rep-
resenting the distance between two point sets without hav-
ing an a priori correspondence between the two sets [10].
Given the two point sets A = {a1,a2, · · · ,aN} and B =
{b1, b2, · · · , bQ}, the Hausdorff distance (HD) is defined as

H(A,B) = max
(
h(A,B), h(B,A)

)
(7)

with
h(A,B) = max

an∈A
min
bq∈B

d(an, bq) (8)

where d(an, bq) denotes a distance between pattern vectors
an and bq . To solve the problem that an outlier or occlusion
could skew an otherwise close correspondence, some partial
Hausdorff distance (PHD) measures are proposed, of which the
least trimmed square Hausdorff distance (LTS-HD) is regarded
to be robust [15]. The directed LTS-HD may be written

hLTS(A,B) =
1

P

∑
an1∈A′

min
bq∈B

d(an1 , bq) (9)

where A′ = {a1,a2, · · · ,aP }, A′ ⊂ A, P < N ,
minbq∈B d(an1 , bq) < minbq∈B d(an2 , bq) for each an1 ∈ A′
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and an2 ∈ A − A′. Thus LTS-HD takes the mean of the P
minimum distances between the point sets.

Since scatterer distribution is the important information
contained in HRRP data, the locations and magnitudes of the
target scatterers can be used as the feature patterns for HRRP
target recognition. Let SA = {sA1, sA2, · · · , sAN} denote
the location indices of scatterers extracted from an HRRP
sample and |ŵSA | = [|ŵsA1 |, |ŵsA2 |, · · · , |ŵsAN |]T denote the
corresponding magnitudes, which are extracted via the OMP
algorithm discussed in Section II-B, the feature pattern for
each scatterer is an = [sAn, |ŵsAn |]T and the point set for this
HRRP sample is A = {a1,a2, · · · ,aN}, where the pattern
order, i.e., the scatterers’ order, in A accord with their extrac-
tion order via the OMP algorithm. The scatterers’ magnitudes
must satisfy |ŵsA1 | ≥ |ŵsA2 | ≥ · · · ≥ |ŵsAN |. Thus the first ex-
tracted scatterers are dominant scatterers for an HRRP sample.
As discussed in [17], the target signal can be approximated by
the echoes from the dominant scattering centers. We propose a
PHD measure, called dominant-scatterers’ Hausdorff distance
(ds-HD), for our scatterer matching problem. The ds-HD is
expressed as

hds(A,B) =
1

P1

∑
an1∈A′

min
bq1∈B′

d(an1 , bq1) ,

hds(B,A) =
1

P2

∑
bq1∈B′

min
an1∈B′

d(bq1 ,an1) (10)

In (10), A′ = A′
1 ∪ {aP1} = {a1,a2, · · · ,aP1−1} ∪ {aP1},

A′ ⊂ A, P1 < N , ∥ΦŵSA′1
∥2 < r∥yA∥2 and ∥ΦŵSA′∥2 ≥

r∥yA∥2 with yA denoting the frequency response of the HRRP
sample corresponding to A and 0 < r < 1. Thus A′ represents
the dominant scatterers’ pattern set of the HRRP sample.
Similarly for B′. The parameter r is determined via the cross-
validation method in the classification experiment. The ds-HD
is the mean of distances between the dominant scatterers from
two point sets. The PHD used in this paper is defined as

H(A,B) = max
(
hds(A,B), hds(B,A)

)
(11)

The d(·, ·) in (10) is calculated from the Mahalanobis distance

d(an1 , bq1) =
√
(an1 − bq1)

TΣ−1(an1 − bq1) (12)

where Σ is a diagonal matrix, its diagonal entries are the
measurement error variances of each feature in the feature
vectors in the point sets. Here one feature in our pattern is the
location index of a scatterer, while the other is the intensity
of the scatterer.

B. HRRP recognition algorithm based on scatterer matching

As discussed in [2]–[5], [7], [11], [14], HRRPs from com-
plex targets yield target signatures that are a strong function
of the target-sensor orientation, referred to as target-aspect
sensitivity in [3], [4]. To deal with the target-aspect sensitivity,
the multi-aspect HRRP dataset from each target is divided into
subsets (as in [3], [4]), where the HRRP data in each subset
are collected from a target-aspect sector roughly without the
scatterers’ motion through range cells (MTRC). Thus each

subset is defined to be an aspect-frame from the target [3],
[4]. For each aspect-frame from the training data, we use the
HRRP sample with the smallest summation of PHDs between
it and each other samples in this aspect-frame as the frame
template. In the classification stage, the denoising processing
is implemented for a single test sample. Then according to
the nearest neighbor criterion, the class membership of the
test sample will be assigned to the class of the frame template
with the minimum PHD. In this paper, to deal with the time-
shift sensitivity and amplitude-scale sensitivity,each training or
test sample is time-shift compensated with its first geometric
moment and normalized by dividing its l2-norm.

IV. EXPERIMENTAL RESULTS

We examine the performance of the proposed model on the
measured airplane data used in [3]–[5]. The center frequency
and bandwidth of the radar are 5520MHz and 400MHz.
The projections of target trajectories onto the ground plane
are shown in Figure 1. In order to test the generalization
performance of the recognition methods, the 2nd and the 5th
segments of Yak-42, the 6th and the 7th segments of Cessna,
the 5th and the 6th segments of An-26 are taken as the training
samples, other data segments are taken as test samples in our
experiments.
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Fig. 1. Projections of target trajectories onto the ground plane: (a) Yak-42;
(b) Cessna Citation S/II; (c) An-26.

This HRRP dataset is measured under high SNR (≈ 40dB)
and without any interference. In order to evaluate the denoising
performance of our proposed method, we add simulated white
noises to the inphase and quadrature components of the
complex frequency responses from the test samples. The SNR
is defined as

SNR = 10× log10

( ∑L
l=1 Pyl

L× PNoise

)
(13)

where Pyl
denotes the power of the lth frequency response

from the original test sample, L denotes the number of
frequency components (here L = 256), and PNoise denotes
the power of noise in each frequency component.

Firstly, we show the denoising results on the measured data.
Figure 2 gives the three denoising examples for HRRP data
under SNR=10dB via OMP with K = 2 × L. Comparing
between the original HRRP, noisy HRRP and denoised HRRP
samples, we can see that the proposed denoising method works
well not only in removing the noise component but also in
reconstructing the target scattering coefficients.

To quantificationally evaluate the denoising performance,
we define the relative HD-based-error as

E =
H(Â, Ā)

H(Ā, {[0, 0]T})
(14)
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Fig. 2. Denoising examples for three measured HRRP samples. Left column:
the noisy HRRP samples under SNR=10dB; Right column: the original
HRRPs under high SNR about 40dB (black real lines) and the denoised
HRRPs from those on the left via OMP with K = 2× L (red dot lines).

where Â denotes the point set for the denoised HRRP sam-
ple, Ā denotes the point set for the original HRRP sample
without noise, H(·, ·) is calculated according to (11), and
the denominator H(Ā, {[0, 0]T}) is used to normalize the
HD-based-error. Figure 3 further quantitatively depicts the
denoising performance for all test HRRP samples in our
data set via the average relative HD-based-errors. Here the
relative HD-based-error for each test sample is calculated
according to (14) with Ā denoting the point set for the original
HRRP samples under SNR≈40dB. We also use five noisy
datasets with different adding noise processing to evaluate the
robustness of our proposed method. As shown in Figure 3, the
average relative HD-based-errors of the denoised HRRP data
are smaller than those of the noisy data, especially under the
low SNR conditions.
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Fig. 3. Variation of the average relative HD-based-errors for all test HRRP
samples in our data set with SNR. The blue line denotes the average relative
errors between the noisy data and the original data under high SNR about
40dB, while the red line denotes those between the denoised data via OMP
with K = 2 × L and the original data under high SNR about 40dB. The
errors are averaged over five runs with different adding noise processing.

Then in the classification experiment, we compare the
proposed noise-robust scatterer matching recognition method
with its non-robust version and the existing statistical recog-
nition method based on Gaussian model [11], [14] without
denoising. Figure 4 shows the average recognition rates of
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Fig. 4. Variation of the average recognition rates with SNR via statistical
recognition based on Gaussian model [11], [14] without denoising, HD-based
scatterer matching recognition without denoising for test samples and with
test samples denoised via OMP (K = L and K = 2 × L). The recognition
rates are averaged over five runs with different adding noise processing.

our measured dataset versus SNR. The non-robust version of
scatterer matching recognition method means the noise power
threshold δ for a test sample is very small, which accords
to a high SNR case (≈40dB) and does not equal to its real
value. In this way, the noised scatterer information is used
in the following HD-based recognition method. As shown in
Figure 4, when the SNR≥25dB, the influence of noise is not
so significant, the four methods yield the similar recognition
accuracies, and the Gaussian model is a little better than other
methods only under SNR≈ 30dB; when SNR≤25dB, the two
noise-robust methods outperform the noised Gaussian model
and noised HD-based method, and the performance of our
superresolution version (K = 2×L) is a little better than that
of the orthogonal version (K = L). In the real application, we
need a threshold of the recognition rate for the RATR problem
to evaluate the noise-robustness performance. According to our
experience and some papers based on our measured data from
the three real airplanes [3]–[5], [7], recognition rate larger than
80% can satisfy the requirement of the real application. As
shown in Figure 4, if we assume the recognition rate threshold
is 80%, our method with K = 2×L can work under the test
condition of SNR≥18dB, while the noised Gaussian model
requires SNR≥24dB. According to the radar equation, in the
real application a 1dB advantage in SNR will bring an increase
about 6% in the recognition distance between radar and target.
Therefore, the recognition distance of our proposed method is
about 1.42 times as long as that of the noised Gaussian model.

V. CONCLUSION

A noise-robust scatterer matching recognition method is
proposed for radar HRRP data in this paper. The target
dominant scatterers in noisy HRRP data are first extracted via
the OMP algorithm, and then the magnitudes and locations
of extracted scatterers are used as the feature patterns in
the scatterer matching recognition algorithm based on HD.
Experimental results on the synthetic and measured data show
that the proposed method can obtain good recognition and
denoising performances under the relatively low test SNR
condition. In the real application, the SNR advantage can
effectively extend the recognition distance between the target
and radar.
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