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ABSTRACT

In this paper, we design a novel regularized empirical risk
minimization technique for classification called Adaptive
Margin Slack Minimization (AMSM). The proposed method
is based on minimizing a regularized upper bound of the
misclassification error. Compared to the cost function of the
classical L2-SVM, AMSM can be interpreted as minimizing
a tighter bound with some additional flexibilities regarding
the choice of marginal hyperplane. A hyperparameter-free
adaptive algorithm is presented for finding a solution to the
proposed risk function. Numerical results shows that AMSM
outperforms L2-SVM on the tested standard datasets.

Index Terms— 1.2-SVM, Structural Risk Minimization,
Reproducing Kernel Hilbert Space, Adaptive Margin

1. INTRODUCTION

Learning machines in the Reproducing Kernel Hilbert Space
(RKHS) are some of the most popular nonlinear models ap-
plied to classification problems due to their success on a wide
range of applications [20, 6]. They have been proposed in
the context of the dual for solving Support Vector Machine
(SVM) [22, 21] problems. Briefly speaking, in a learning
model, when all data vectors appear in the formulation as
pairs of inner products, kernel tricks can be applied to avoid
computations in the possibly infinite-dimensional feature
space. Solving the SVM problem in the dual becomes the
standard approach, because the kernel trick can be naturally
applied. However, it has been revealed that it is possible to
train SVMs in the primal with the same performance [17].
In fact, it gives even better results when it comes to deriving
approximate solutions. Furthermore, the training process in
the primal mostly involves least squares and simple imple-
mentations, which is preferred in many scenarios.

In this paper, we develop a new regularized empirical risk
minimization learning model, where the objective function is
a regularized upper bound of the misclassification error. We
show that such formulations can be interpreted as an exten-
sion to the L2-SVM by minimizing a tighter error bound with
better flexibility. The corresponding algorithm solving this
model can be interpreted as the training process for L2-SVM
in the primal with data selection using an adaptive margin.

This paper is organized as follows. First, we motivate the
new learning model called Adaptive Margin Slack Minimiza-
tion (AMSM) in Sec. 2 by introducing an upper bound of the

misclassification error. We show that AMSM is viewed as
an extension to L2-SVM, since the objective function of L2-

SVM can be interpreted as the minimization of a looser bound
with less flexibility compared to AMSM. In Sec. 3, we de-
velop an algorithm to solve the proposed learning model and
numerical results are shown in Sec. 5.
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2. BACKGROUND

2.1. Notation

Given the training set {(x;,t;) | x; € RP,t, € {1---C},Vi €
{1---N}} with x; being the data vector and ¢; the cor-
responding label information, the task is to find a func-
tion f(x) that maps an unseen testing data vector x to
its label ¢ as accurate as possible. In binary classification
problems, linear methods attempt to parameterize the func-
tion using f(x) = wlx + b with the classification rule

c_J1, fx)>0 b .
t = 2. F(x) <0 where w € RP is called the solution

vector and b € R the bias. Although enjoying the benefit
of computational simplicity, linear models are not often ade-
quate. That gives rise to the popularity of nonlinear models,
such as kernel techniques, where we are given a(n) (implicit)
nonlinear mapping ¢ : x — ¢, such that the dimensionality
of ¢ is typically much greater than p. By using such transfor-
mations, the classification boundary becomes nonlinear and
hence in general results in a better class separability power.
The nonlinear boundary corresponds to a linear hyperplane
in the new high dimensional feature space, called the Re-
producing Kernel Hilbert space (RKHS). The training data
is then denoted as D = {(;, t;) }vi- From the Representer
Theorem [6], the vector w can be written as a linear combi-
nation of all the training vectors in RKHS, i.e. Jo;, such that
W =) ep®p; Vi € {1,--- N}. However, one drawback
of such learning models is that the computational complexity
is at least O(N?) due to the fact that we need to compute and

store a gram matrix K = @gép, where ®p = [P1° " @n],
V¢, € D. To resolve such issues, kernel approximation tech-
niques [16, 9, 10, 19, 18, 12, 11, 8, 5, 4, 2] are employed,
a matrix ®5 with orthonormal columns is generated, such
that || ®5®®L ®p — K|| is minimized for some predefined
norm || - ||. In our paper, we apply a kernel approximation
technique instead of using the whole training set to evaluate
the kernel matrix for the sake of scalability.

To simplify the presentation, we limit our discussions to
the binary classification problem. Extensions to multiple class
can be found in the appendix. The advantage is that the com-
plexity does not increase with the number of classes.

2.2. Motivation

A commonly used classifier called the Least Square Support
Vector Machine (LS-SVM) [14] has been developed under
different names in the literature, such as Proximal Support
Vector Machines (PSVM) [13] and Kernel Ridge Regression
(KRR) for classification. The main idea of such classifiers
is to construct two optimal marginal hyperplanes, where data
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points from each class are assigned to the closest marginal
hyperplane with low misclassification rate. More precisely,
for given training data pairs (¢,, ;) € D witht; € {—1,+1},
define the regularized empirical risk function as follows

= & +plwl3 (1)

i€Lp

Rrs—svm(w,b)

where £ is the slack variable associated with pattern ¢ defined

as:
E=1—(wip+b)t; )
Set Zp denotes the index set for the elements in the set D;
(w, b) are the design parameters and the scalar p is the regu-
larization parameter [1] that penalizes the complexity of the
classifier. Given a testing pattern ¢, the classification crite-
rion is £ = sign (ch,o + b).
As we can see that LS-SVM takes all training data as its
support vectors without any selection and hence it might lead

to overtraining. This problem gives rise to another important
member of the SVM family called the L2-SVM [3]:

=Y &+plwli3 3)

VE; >0

Rr2—svm(w,b)

By using the squared hinge loss instead of the quadratic loss
function as in LS-SVM, L2-SVM is often considered as an
extension to LS-SVM when training on the primal.

Clearly, the quantity |£;| measures how far ¢, is from the
marginal hyperplane. The concept of slack variables is widely
used in many classification models, such as soft margin SVM
[7], slackmin [15], and as mentioned above, the LS-SVM [14,
13], etc.

By definition, a pattern ¢ is misclassified when & > 1
and hence Pr(¢ > 1) is the ultimate probability that we would
like to minimize. Using the conditional Markov inequality,
for any 7 € [0, 1],

Pr(¢2>1) = Pr(2>1]&>y)Pr(€>7)
< E(&] &> 7)Pr(€ > ) )
< E([€>7) Q)

The risk function in Eq. (1) can be then modified into to min-
imizing the upper bound of Pr(¢2 > 1). By using either the
upper bound in Eq. (4) or (5) with different y, we obtain dif-
ferent learning objectives. To illustrate this, first, let us define
the active set Sy = {p, : & > v, Vi € Ip}.

- The regularized risk function based on Eq. (5) (y = 0)
is then equivalent to the L2-SVM (3):

Ro(w,b) = > &+ pllwll3 (6)

i€ls,

- The regularized risk function based on Eq. (4) (adaptive
7), which we call the “Adaptive Margin Slack Mini-
mization” (AMSM):

S
Ry(w.b) = S0 S &2 g w3 )
i€Ts,,
x Y € vl = B (w ) ®)
zEZS

where % is the empirical probability corresponding

to Pr(¢ > ~) in Eq. (4).

Compared to Eq. (6), Eq. (8) replaces the hyperparameter p by
an adaptive regularization parameter p = % Furthermore,
Eq. (8) has the following advantages:

1) The regularized risk function for Eq. (7) is associated
with a tighter upper bound (Eq. (4)) compared to (5);

2) The adaptive margin y introduces better flexibility;

3) Compared to L2-SVM (Eq. (6)), a lower computational
complexity and storage requirement is achieved by re-
ducing the selected data size fory € (0, 1],1.e. | S |<|
Sp |. Typically, it results in a faster convergence rate.

In the next section, a learning algorithm is presented to min-
imize Eq. (8), where instead of selecting data within a fixed
margin v = 0, an adaptive margin is updated iteratively. The
classifier is trained in the primal using the automatic data se-
lection scheme, which can be naturally extended to a sequen-
tial data acquisition and parallel framework.

3. ALGORITHM

According to the Representer Theorem [6], the solution vec-
tor w can be written as a linear combination of the training
data in the RKHS. With kernel approximation techniques, we
have w = ®ga, given @4 a matrix with m orthonormal
columns, whose span approximates the span of the whole
training data set in the RKHS, and a € R™. Hence, the pa-
rameters to be estimated are (a, b) in practice and the solution

vector is thus defined as 3 = [a  b]” .

Given 7o = 0 and 3, computed based on minimizing
Eq. (8) for all i € Zp or a subset of Zp, define the active set
at iteration £ as follows:

Sy ={pi 1 &ki >k, Vi€ Ip} )
where
i =1~ (al i + bu ) L (10)

At iteration k, the algorithm is composed of two parts:

1) Computing (az41,bx+1) based on S,

2) Finding 7441 to determine the next active set S, _ ;.

3.1. Step 1: Computing 3, ,

Given S, , the update of 3;, — 3, ; is obtained by minimiz-
ing Eq. (8), which is a least-squares problem. More specifi-
cally, at each iteration k, Eq. (8) gives us the following regu-
larized empirical risk function:

2
By (ab)= > (1 — (@"Kai + b)ti) + pra"Kea (11)
i€Ts.,,
where p, = S S n is the regularization parameter. The vec-
tor Kg; = @Ggal represents the feature vector and Ko =

@gi’g. Generally speaking, for any S C D, we define ma-

trix Kgs = ‘I’E'I’S- For kernel methods, these matrices can
be evaluated using the kernel trick. It is easy to see that, for
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given S, , the minimization on B,, is convex and the solu-
tion is given by:

Br1 = [bkiﬂ =arg r;nin By, = M?thsu. (12)
a,

where ts,, is a vector contains all ¢; for ¢ € IS%. Let
Kcs Kcs +pel Kgs, e Kas

M, = "l and Vi, = k|
[ e KGS S | g e’

where e’ = [1---1].

3.2. Step 2: Finding 541

After B, has been computed, a threshold 7,1 needs to be se-
lected with the following considerations:

I. The larger ~yx+1 is, the more data are eliminated, which re-
sults in a lower computational complexity and hence a possi-
bly higher variance in the solution vector.

II. We would like to choose yx+1 such that the classification per-
formance is not degraded.

III. Convergence property.

At each iteration, since the empirical risk Eq. (8) is only minimized
on the set S, , we do not have any guarantee on D \ S, In order
to find yx41 such that patterns from set D \ S, are still correctly
classified at iteration k& -+ 1, it suffices to find 4 that satisfies:

Ser1i <1, i€lps,, (13)

If such yx 41 can be identified, then condition II. is satisfied. Another
remaining issue is the convergence of the algorithm (condition IIL.).

Definition 1 (Inclusion Property). The two-step algorithm has “In-
clusion Property” if there exists a sequence Yi,- -+ , Yk, Yk+1 " *»
such that S C S, holds VE.

Ye4+1

Given the empirical risk defined in Eq. (7), we have the follow-
ing theorem.

Theorem 1. Assume that the inclusion property holds. Then there
exists a sequence of decreasing R, by applying AMSM.

Proof. To construct a sequence Ry, > Ry > -+ >Ry, > -+ >
R > 0, it suffices to show that there ex1sts a sequence, such that
Vk the following holds:

@ ®
Reyprr (@41, bk41) < Ry (ak, b)) < Ry (ak, bie)-

Let By, ., (ak+1,br+1) be the regularized empirical risk defined in
Eq. (11). Given ag41,br+1 the updated optimal solution vectors,
it is always true that B, , | (ax+1,bk+1) < B, (ak, bx). From

the definition, we know that R, (ax, bx) = ‘SX/‘ | B,, (ak, by), then
we have R, (Ak+1,bk+1) < Ry, (ak, by) and hence @ holds.

Furthermore, since the inclusion property holds, () is also satisfied

Spsy |
+1
pi1 C S, and hence — <

by definition in Eq. (7), since S,
%. It completes the proof. O

Therefore, one way to assure convergence is to choose ~y at each
step, such that the inclusion property is upheld. It suffices to select
Yr+1 such that the following holds:

Vht+1 = Yk (14)

and

Ert1i < Vetr, Vi€ I{ﬁk.jiék,jé"/k+1} 15)
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Remark 1 (Inclusion property implies increasing penalty on the
complexity (condition L.)). We can see from Eq. (8), the complexity
of the classifier is penalized by the regularization term p||w||3. If
the inclusion property holds, the weight of the penalty term, which
is controlled by p, will increase w.r.t. iteration k. It means that by
eliminating more and more training data, the penalty of the model
complexity will automatically increase to avoid overfitting.

Remark 2 (Reduce the computational cost using the Woodbury
identity [23]). At each iteration, the cost for computing the solution
vector By, 1 is O(|Sy, |*) (c.f. Eq.(12)). However, if the number of
rejected patterns is smaller than the basis size, the computational
complexity can be reduced using approximations.
Kes S

LetV,, = { eT"’k], where S, =
being removed from the training process at step k. When |S+, | <
m, we rewrite the matrix My, as:

i1 \ Sy, IS the subset

M =M1 — V., VI + ApiIo (16)
1
wher? I = (T*—?r) and Apy, = pr—pr—1 = ‘gﬁ—% =
%. When Apy, is a small number, then we have:
M, " =N; ' — Ape N, "IN + O(Ap7) a7
where N;* = (My_1 — V,,, VI ) ™!
Therefore, with error up to the order of Ap?, we can approxi-
mate M;l using:
M '~ Ny = App N TN (18)
where N;l can be updated using the Woodbury identity:
Ny =M, MLV, (1 VI M; LV, )_ vIM; L.
(19)
The overall computational complexity is:
o (maX(|g§7k 2, m2)) (20)

4. IMPLEMENTATION

In this section, the implementation of the two-step iterative proce-
dure discussed in Sec. 4.1 is presented.

4.1. Inner loop: finding ;41
_ a
-Input: Ko, 76, M, Biyy = [b:+11] s,
1) Initialization:
— Stopping flag: F' = 0.
Compute Ex41,4:

k1,0 =1— :35-0-1 [KlGi] t;
i), Vi€ Is,, -
Sort all &1, in an ascending order,

where K¢ = Kep (:,

Crpray <o §£k+1,d‘s‘yk‘. (21)
- Letv,q, = [dei} and construct Vi, = [Vrd; *-
where )
m = argmin {k+1,dv, > YR} (22)
Ehrtdy < Chtdmor Sk S Ekt1,dy <

— Let the iteration number [ = 0 and j =
— Initialize (M},,)”" by removing matrix V,, from
M,:l using the Woodbury identity (c.f. Eq. (18).

“Vrdn,],

< Eht, dis,, |



— Let Ig%+1 ={i: 41,5 >, Vi€ Ts, }

2) Repeat:
- l+<1l+1
Kqoga
_ ) U GS
- LetIS’LYk+1 = Si/;jrl \dJ and Vk+1 = |: e%k+1:|

where e = [1---1]7.
- Update (M}, ;)" by removing vector Vi, using the
Woodbury identity:

1 \-1 -1
(Mpy1)™ = (Mk+1)

: N
assuming that W

(M) 7 ey vl (M)

+ AIVIk-H
~ 0, where AM§H_1 =

k41 k+1
I—vT r,d; (Mk+1) Vo, dj
— Update ﬁkﬁ (Mk+1) Vk+1tsz

Yk4+1
- Compute &}, 15, =1 — (Bh5)" [KGI} Vi € Ip.
— Stop if any of the following stopping criteria are satis-
fied:
i. 3¢, such that &4, > 1, forq € Ip \ Zs,
(Eq. (13)).
ii. 3 p, such that £§€+2,p > Ekt1,dz fOr Epr1,p <

Ekt1,d,, (Bq. (15)).
iii. Matrix ML is rank deficient.

k+1
-j+Jj+1L
3) Return:
- If j = m, F = 1 (stopping flag for outer loop).
- Blse, Y1+ &rrras Ml — (Miy)™h

!
Btz ¢ Bito

- Output: F', Yi41, M;Zj.p Bk+2'

4.2. Outer loop: update 3 and Zs~
o Initialization:
- =0®q,M;' =Mp" Ts, =Tp, k=0
— Compute 3, (c.f. Eq. (12), (17) and (19)).
— Identify Igwl
e Repeat:
- Given M;l, v and B, , |, update Y11, Mk_,il, By

and F' according to Sec. 4.1.
— Identify I‘S%H .

— Stop if :Iswcﬂ
— Else ,3 < IBIH—I’ I,s,y — IS%+2

e Output: Band Zs,, .

:I'S"wrz or F=1.
andk =k + 1.

5. RESULTS

We present the results in terms of the testing error on five stan-
dard UCI datasets [24] described in Tab. 1. The hyperparameter for

rbf kernel is the standard deviation o of the Gaussian kernel and
degree d for polynomial kernel. The hyperparameters are chosen

using grid search and cross-validation. The searching spaces are
o € {0.01,0.03,0.05,0.1,0.3,0.5,5} and d € {2,4,6}, respec-
tively. The ridge parameter p is fixed to be 0.1. The hyperparameter

C in L2-SVM is tuned to achieved the best result. We can see from
Tab. 1 that AMSM gives a higher classification accuracy compared

to L2-SVM.

L2-SVM | AMSM

Dataset Size Classes Error Error
Ringnorm 7400 (-) 2 1.98% 1.34%
Phoneme 5404 (-) 2 12.16% | 10.67%
Landsat | 4435 (2000) 6 8.12% 7.45%
Pendigits 3498 (-) 10 0.52% 0.34%
Optdigits 1797 (-) 10 2.08% 1.00%

Table 1. Testing results comparison of 1) L2-SVM and 2)
Adaptive Margin Slack Minimization (AMSM) algorithm.
The kernel approximation technique adopted is the Greedy
Spectral Embedding [16]. The column “size” indicates the
training (testing) size, where 10-fold validation method is em-
ployed when marked as (-).

6. CONCLUSION

In this paper, we present a new empirical risk objective function that
can be considered as an extension to SVM with a squared hinge
loss (L2-SVM). An iterative algorithm called Adaptive Margin Slack
Minimization (AMSM) is developed for finding a solution with re-
spect to our proposed cost function. The algorithm is based on se-
lecting training data within an adaptive marginal hyperplane in an
iterative manner. The advantages are 1) hyperparameter free; 2) bet-
ter flexibility; and 3) faster convergence compared to L2-SVM due
to a more aggressive data elimination at each step. Empirical re-
sults on some standard datasets have shown the outperformance of
AMSM. Testing and analytics for the overall performance on large-
scale datasets are under progress.

Appendix: Multiclassification

In the multiclass case, we solve the problem using a multivariable
linear regression model, where instead of a scalar, the output is a
vector taking —1 and +1 as its possible values. Define each element

of vector T ;:
1, ifj=
J):{—l, it] £c (23)
There are three modifications regarding the multiclass learning
model compared to the binary case:

1) For the multiclass case, Eq. 12 for updating ax and by, is mod-
ified into:
_TAY _ ag-1
B=|gr| =Ms VsTs (24)
where A is am x C matrix and b is a C' x 1 vector.
2) The classification criterion becomes:

9; = argmax A(:, C)T‘I’g‘Pi +b(c) (25)

3) Given Eq. (25), the definition of the active set is naturally
extended to the following:

1 -
Soe = e 5(Eci(€) + Emaxii) = 7} (26)
1
where £, ; = - (AT‘I’E‘Pc,i + b)diag(Te,:), Ve
1

and Emax,s = max ({£,(1), £:(O)}\ &i(c)) with &;(c)
indicating the c'" element of the vector Ve. Note that the
choice of i does not differ from Sec. 3.
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