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Abstract— The problem of least squares regression of a d-
dimensional unknown parameter is considered. A stochastic
gradient descent based algorithm with weighted iterate-averaging
that uses a single pass over the data is studied and its convergence
rate is analyzed. We first consider a bounded constraint set
of the unknown parameter. Under some standard regularity
assumptions, we provide an explicit O(1/k) upper bound on the
convergence rate, depending on the variance (due to the additive
noise in the measurements) and the size of the constraint set. We
show that the variance term dominates the error and decreases
with rate 1/k, while the constraint set term decreases with rate
log k/k2. We then compare the asymptotic ratio ρ between the
convergence rate of the proposed scheme and the empirical risk
minimizer (ERM) as the number of iterations approaches infinity.
We show that ρ ≤ 4 under some mild conditions for all d ≥ 1. We
further improve the upper bound by showing that ρ ≤ 4/3 for the
case of d = 1 and unbounded parameter set. Simulation results
demonstrate strong performance of the algorithm as compared
to existing methods, and coincide with ρ ≤ 4/3 even for large d
in practice.

Index Terms— Convex optimization, projected stochastic
gradient descent, weighted averaging, empirical risk mini-
mizer.

I. INTRODUCTION

For large-scale optimization problems, it is often desir-
able to minimize an unknown objective under computational
constraints. Stochastic Gradient Descent (SGD) is a popular
optimization method in a variety of machine learning tasks
when dealing with very large data or with data streams.
Specifically, instead of computing the true gradient (which
is often computationally expensive) as in a standard gradient
descent algorithm, in SGD-based methods the gradient is
approximated by a single (or few) sample at each iteration.
Using stochastic approximation analysis, it has been shown
that SGD converges almost surely to a global minimum when
the objective function is convex (otherwise it converges to a
local minimum) under an appropriate learning rate and some
regularity conditions [1].

In this paper, we consider the problem of least mean squares
regression, in which a d-dimensional unknown parameter is
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desired to be estimated from streaming noisy measurements.
Specifically, let x, y be random variables with values in Rd,
and R, respectively, and let Ω ⊆ Rd be a compact convex
constraint set for the unknown parameter. It is desired to
minimize the expected least squares loss:

min
ω

E
[
||xTω − y||2

]
subject to ω ∈ Ω ⊆ Rd

(1)

from the samples stream (xk, yk) at times k = 1, 2, ...
Motivated by recent studies on accelerated methods of SGD-
based algorithms, we focus on a projected SGD method with
weighted iterate-averaging to solve (1).

A. Main Results

Solving (1) directly is computationally inefficient since it
requires high storage memory for the entire data and high
computational complexity. Thus, our goal is to solve (1)
efficiently so that the running time and space usage are small.
Motivated by recent studies showing that using averaging of
the estimated parameter accelerates the convergence of SGD-
based algorithms, we propose and analyze a Projected SGD
with Weighted Averaging (PSGD-WA) algorithm for solving
(1). Specifically, a projected SGD iterates are computed at each
time k, where averaged iterates are computed as byproducts
of the algorithm (but not used in the construction of the
PSGD iterates). The averaging weights are specified in terms
of the step-sizes that the algorithm uses such that recent
measurements are given higher weights (see Section III for
details). Our main results are as follows: i) We consider a
bounded constraint set of the unknown parameter and propose
a PSGD-WA algorithm that requires a single pass over the
data. The proposed step size has a general form1 of c γ

k+γ ,
where c > 0, γ ≥ 1 are tunable parameters; ii) in contrast to
previous studies on PSGD algorithms with weighted averaging
showing a general order O(1/k) of the error rate, we provide
an explicit finite sample upper bound on the error obtained by
the proposed PSGD-WA algorithm, depending on the variance

1It should be noted that previous studies on PSGD algorithms with weighted
averaging (see [2], [3]) considered only a fixed form of the step size without
tuning parameters.
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(due to the additive noise in the measurements) and the size of
the constraint set. We show that the variance term dominates
the error and decreases with rate 1/k, while the term which
is related to the diameter of the constraint set decreases with
rate log k/k2; iii) we compare the asymptotic ratio ρ between
the convergence rate of the proposed PSGD-WA and the
empirical risk minimizer (ERM) (which is the minimizer in
the absence of computational constraints) as the number of
iterations approaches infinity. We show that ρ ≤ 4 for all d ≥ 1
when the random components of x are identically distributed
and uncorrelated. We further improve the upper bound by
showing that ρ ≤ 4/3 for the case of d = 1 and xk = x for all
k. Simulation results demonstrate strong performance of the
algorithm as compared to existing methods, and coincide with
ρ ≤ 4/3 even for large d in practice.

B. Related Work

Accelerating SGD-based algorithms using averaging tech-
niques has been studied in past and more recent years in
[2]–[22]. In [12], Tseng has developed an accelerated SGD-
based algorithm with iterate-averaging that achieves conver-
gence rate of 1/k2 for problems where the objective function
has Lipschitz continuous gradients. This rate is known to
be the best in the class of convex functions with Lipshitz
gradients [9], for which the first fast algorithm was originally
constructed by Nesterov [5] for unconstrained problems, and
was extended recently by Beck and Teboulle in [15] to a
larger class of problems. Ghadimi and Lan used averaging
in [20] to develop an algorithm that has the rate 1/k2 when
the objective function has Lipschitz continuous gradients, and
rate 1/k when the objective function is strongly convex.
Juditsky et al. [11] considered a mirror-descent algorithm
with averaging to construct aggregate estimators with the best
achievable learning rate. Averaging techniques for the mirror-
descent algorithm for stochastic problems involving the sum of
a smooth objective and a nonsmooth objective function have
been studied by Lan in [21]. Other related works are concerned
with iterate-averaging for best achievable rate of stochastic
subgradients methods [17], [19], as well as gradient-averaging
[8], [10], [13], [14], [16], [18] and a sort of momentum [23],
[24], in which the algorithm uses a sort of weighting over
previous gradients (instead of the iterate minimizer) in the
construction of the algorithm.

The averaged iterates considered in this paper are not used
in the construction of the PSGD iterates, but only computed as
byproducts of them (see Section III for details). Such methods
have been studied by Nemirovski and Yudin [4] for convex-
concave saddle-point problems, by Polyak and Juditsky [6]
for stochastic gradient approximations and by Polyak [7] for
convex feasibility problems. In [6], an asymptotically optimal
performance has been achieved. However, a finite sample
analysis remained open. More recently, Lacoste-Julien et al.
[2] used this averaging approach for a projected stochastic
subgradient method to achieve 1/k convergence rate for
strongly convex functions. Nedić and Lee [3] used a similar
form of this scheme for a more general projected stochastic
subgradient method using Bregman distances, which achieves
1/k convergence rate for strongly convex functions, and 1/

√
k

convergence rate for general convex functions.
In this paper we focus on the testing error (i.e., the expected

error on unseen data) of regression from noisy measurements,
in which the convergence rate deteriorates (varies from 1/k
to 1/

√
k per-iterate). While accelerating methods cannot be

made faster, they have ability to produce estimates with low-
variance, which attracted much interest in recent years [22],
[25]–[27]. We focus on the strongly convex case, in which
O(1/k) is the best attainable convergence rate [26]. However,
this convergence rate is only optimal in the limit of large
samples, and in practice other non-dominant terms may come
into play in the finite sample regime. In [26], Frostig et
al. have developed a Streaming Stochastic Variance Reduced
Gradient (Streaming SVRG) algorithm using a constant step
size, inspired by the SVRG algorithm developed by Johnson
and Zhang [25], and provided a finite sample analysis for a
general strongly convex regression problems. They showed
that the asymptotic ratio ρ between the convergence rate of the
Streaming SVRG and the ERM algorithm approaches ρ = 1 as
the number of iterations approaches infinity. However, achiev-
ing ρ = 1 requires the sample batch size to grow geometrically
occasionally for gradient-computing, as well as setting the con-
stant step size close to zero (which deteriorates performance
in the finite sample regime). In [22], Defossez and Bach have
developed a SGD algorithm using a constant step size with
averaging for least mean squares regression, and provided a
finite sample analysis. They showed that ρ = 1 as the constant
step size is set close to zero, which deteriorates performance in
the finite sample regime. In this paper, however, the proposed
PSGD-WA algorithm uses decreasing step-sizes which can be
large in the beginning of the algorithm and decrease as the
number of iterations increases. The proposed PSGD-WA uses a
weighted averaging of the estimates, by letting higher weights
to recent measurements. We provide a finite sample analysis
as well as an asymptotic upper bound ρ ≤ 4 when d ≥ 1 and
ρ ≤ 4/3 when d = 1. Note that our results does not require
the sample batch size to grow geometrically occasionally as
in [26] or setting small step-sizes in the beginning of the
algorithm as in [22], [26]. Thus, the proposed PSGD-WA
algorithm is expected to perform well in the non-asymptotic
case in addition to the nice asymptotic property as illustrated
by simulation results provided in Section V.

C. Notations

Throughout the paper, small letters denote scalars, boldface
small letters denote column vectors, and boldface capital
letters denote matrices. All vectors are column vectors. The
term zT denotes the conjugate transpose of the vector z, and
|| · || denotes the Euclidean norm. The subscript k associated
with a r.v. denotes a realization at time k.

II. PROBLEM STATEMENT

Let x, y be random variables with values in Rd, and R,
respectively. At each time k, we observe i.i.d. samples across
time (xk, yk). We assume that E

[
xTx

]
is finite and we denote

by Rx = E
[
xxT

]
the correlation matrix of x.

It is desired to minimize the expected least squares loss in
(1) from the samples stream (xk, yk) at times k = 1, 2, ... It
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is assumed that Rx is invertible (i.e., strongly convex case).
We denote by µ the smallest eigenvalue of Rx, so that µ > 0.
We denote the optimal solution of (1) by ω∗ ∈ Rd, and it
is assumed that a decision maker knows that ω∗ lies in the
interior of a convex constraint set Ω ⊆ Rd.

Let f(ω) , E
[
||xTω − y||2

]
be the mean squares loss

as a function of ω, and f∗ = f(ω∗) ∈ R be the value at
the minimum. The term vk = xT

kω
∗ − yk denotes the zero-

mean additive noise with variance σ2. The gradient of f at ω
is defined by ∇f (ω) = E

[
2x

(
xTω − y

)]
, where gk(ω) ,

2xk

(
xT
kω − yk

)
is defined as the estimate of the gradient at ω

based on a single sample at iteration2 k. For convenience, we
write ∇fk , ∇f (ωk) and gk , gk(ωk) when referring to
the gradients at ωk, where ωk is the estimate of ω at iteration
k obtained by an iterative algorithm (see the next section for
details). The estimation error at the kth iteration is defined by
ek , ωk − ω∗.

III. PROJECTED STOCHASTIC GRADIENT DESCENT
ALGORITHM WITH WEIGHTED AVERAGING

We propose a Projected Stochastic Gradient descent algo-
rithm with Weighted Averaging (PSGD-WA) for solving (1).
According to PSGD-WA, we hold two estimates of ω∗ at each
iteration, denoted by ωk, ω̄k. The estimate ωk is computed at
each iteration (say k), and ω̄k is the weighted average estimate
based on all estimates up to time k. Let λk be a decreasing step
size with k. Let ω0 ∈ Ω be an initial estimate of ω (possibly
random). At iteration k = 1 we compute the projected estimate
of ω∗ based on the random measurements (x0, y0) and the
initial estimate ω0:

ω1 = arg min
ω∈Ω

{
λ0g

T
0 · (ω − ω0) +

1

2
||ω − ω0||2

}
, (2)

and we update this estimate iteratively. In general, at iteration
k + 1 we compute the projected estimate of ω∗ based on the
random measurements (xk, yk) and the last estimate ωk:

ωk+1 = arg min
ω∈Ω

{
λkg

T
k · (ω − ωk) +

1

2
||ω − ωk||2

}
∀k ≥ 0.

(3)
It can be verified that ωk+1 projects the unconstrained gradient
descent iterate into Ω. Motivated by previous studies on SGD
with iterate-averaging (e.g., [2], [3]), in addition to the estimate
ωk+1, we propose to compute the weighted average estimate:

ω̄k+1 =
k+1∑
i=0

βk+1,iωi, (4)

where βk,0, βk,1, ..., βk,k are nonnegative scalars with the sum
equals 1, and the weighted average estimate ω̄k is computed
based on the first k iterations. These convex weights will be
defined in terms of the step size values λ0, λ1, ..., λk, and ω̄k

can be computed recursively (see (5) in Section III-A). In
Section IV we will analyze the convergence rate of ω̄k to the
solution of (1).

2When a few samples are available per iteration we estimate the gradient
by averaging.

A. Implementation
The PSGD-WA algorithm is computationally efficient as

compared to existing methods. At iteration k, the algorithm
requires to store ωk, the weighted average ω̄k−1 and the nor-
malization term Sk−1 =

∑k−1
r=0 1/αr, where αr = γ/(γ + r)

(see (6) below). The weighted average ω̄k can be updated
recursively by computing Sk = Sk−1 + 1/αk and by setting:

ω̄k =
Sk−1

Sk
ω̄k−1 +

(
1− Sk−1

Sk

)
ωk. (5)

Note that PSGD-WA does not require the sample batch size to
grow as in [26]. The storage memory required by PSGD-WA
is very similar to that required by the SGD with averaging and
constant step size algorithm proposed in [22].

IV. PERFORMANCE ANALYSIS

In this section we analyze the algorithm’s performance.
Consider first the case where the constraint set Ω is bounded.
Let emax = supω∈Ω

{
||ω − ω∗||2

}
be the maximal square

error of any projected estimate of ω∗.
Theorem 1: Assume that PSGD-WA is implemented, with

λk =
1

2µ
αk =

1

2µ

γ

γ + k

βk,i =
1/αi∑k
r=0 1/αr

,
(6)

where γ ≥ 2. Then, for all k ≥ 0 we have:

E [f (ω̄k)]− f (ω∗)

≤
(log(k + 1) + 1) γ2E

[
||xxT ||2

]
C2

µ2(γ + k)2

+
(k + 1)γ2E

[
||x||2

]
σ2

µ(γ + k)2
, ∀γ ≥ 2 ∀k ≥ 0,

(7)
where

C2 , 4emaxdE
[
||xxT ||2

]
+ 4σ2E

[
||x||2

]
. (8)

The proof is given in the extended version of this paper [28].
Remark 1: From Theorem 1, we obtain an explicit O(1/k)

upper bound on the convergence rate, depending on the noise
variance (second term on the RHS of (7)) and the size of the
constraint set (first term on the RHS of (7)). The variance
term dominates the error and decreases with rate 1/k, while
the other term (which is related to the diameter emax of the
constraint set) decreases faster at rate log(k)/k2. The best
asymptotic (as k increases) bound is obtained by setting γ = 2.

Remark 2: Note that when the random components of x
are identically distributed and uncorrelated (thus, the cor-
relation matrix of xk can be written as E

[
xxT

]
= µId,

where Id is the identity matrix and its minimal eigen-
value is µ) we obtain: E

[
||x||2

]
= dµ. As a result,

we have limk→∞ k (E [f (ω̄k)]− f (ω∗)) ≤ 4dσ2, where
limk→∞ k

(
E
[
f
(
ωERM

k

)]
− f (ω∗)

)
∼ dσ2 under the ERM

scheme. Hence, the asymptotic ratio ρ between the conver-
gence rate of our scheme and the ERM scheme is upper
bounded by ρ ≤ 4 as the number of iterations approaches
infinity.
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Remark 3: The streaming SVRG algorithm proposed in
[26] achieves ρ = 1 asymptotically with the price of ge-
ometrically increasing batch sample size occasionally and
setting the constant step size close to zero, which deteriorates
performance in the finite regime. The SGD with averaging
and constant step size scheme proposed in [22] requires a
fixed batch sample size as required by PSGD-WA. However,
obtaining ρ = 1 asymptotically requires to set the constant step
size close to zero, which deteriorates performance in the finite
regime. Theorem 1, however, shows that PSGD-WA achieves
ρ ≤ 4, where the step sizes can be large in the beginning of
the algorithm.

For purposes of analysis whether further improvement in
the resulting error can be expected, we analyze the following
case. Assume: A1) Ω is unbounded (thus, the algorithm applies
SGD-WA without projection); A2) d = 1; A3) the step size
satisfies3 λk = 1

2x2
k

γ
γ+k ; and A4) βk,i is set as in (6). The

following theorem provides a better bound on the error for an
unbounded constraint set.

Theorem 2: Assume that SGD-WA is implemented and
Assumptions A1−A4 hold. Then,
a) for all k ≥ 0 we have:

E [f (ω̄k)]− f (ω∗) ≤ 4γ2σ2E[x2]E[1/x2]

3k
+O

(
k−2

)
.

(9)
b) In addition, if xk = x for all k and γ = 1, we have:

lim
k→∞

k (E [f (ω̄k)]− f (ω∗)) ≤ 4

3
σ2. (10)

The proof is given in the extended version of this paper [28].
Remark 4: Note that when the conditions in Theorem 2.b

hold, then the asymptotic ratio ρ between the convergence
rate of SGD-WA and the ERM scheme is upper bounded by
ρ ≤ 4/3 as the number of iterations approaches infinity. Thus,
the upper bound on the error is better then ρ ≤ 4 obtained in
Theorem 1. Simulation results demonstrate ρ ≤ 4/3 even for
large d in practice.

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to illustrate
the performance of the algorithms. We set the following
parameters (very similar to the experiment setup in [22]):
d = 25, xk ∈ R25 are i.i.d r.v. drawn from a normal
distribution with covariance matrix Id. yk = xT

k ω
∗+vk, where

vk ∼ N(0, 1) is an additive Gaussian noise. ω∗ = [1 2 ... 25]T

is the unknown parameter. The constraint set for the projected
SGD iterates was set to ω∗ ± 100.

We compared three streaming algorithms that require a
very similar computational complexity and tuned their pa-
rameters: i) a standard Projected SGD with decreasing step
size 10/(10 + k), referred to as PSGD; ii) a Projected SGD
using a constant step size 0.002 with Averaging, referred to as
PSGD-A (i.e., a projected version of the algorithm proposed
in [22]); iii) the proposed Projected SGD algorithm with
decreasing step size 10/(10 + k) and Weighted Averaging

3Note that when xk = x for all k, then µ = x2, and λk = 1
2x2

γ
γ+k

,
which is a special case of the step size in (6) when d = 1.

(PSGD-WA). As a benchmark, we computed the empirical risk
minimizer (ERM), which solves (1) directly by using the entire
data at each iteration. The performance of the algorithms are
presented in Fig. 1. It can be seen that the proposed PSGD-WA
algorithm performs the best among the streaming algorithms
and obtains performance close to the ERM algorithm for all
tested k. The ratio between the errors under PSGD-WA and
the ERM schemes was less than 1.335 for all k > 2 · 104
and equals 1.31 for k = 105. These results coincide with the
upper bound ρ ≤ 4/3 obtained in Theorem 2 under d = 1.
However, showing ρ ≤ 4/3 theoretically for d > 1 remains
open. It can also be seen that PSGD-A performs the worst for
k ≤ 6 · 104 iterations but outperforms PSGD for k > 6 · 104.
These results confirm the advantages of the proposed PSGD-
WA in the finite sample regime. It should be noted that similar
results have been observed under many different scenarios.

1 2 3 4 5 6 7 8 9 10

x 10
4

10
−4

10
−3

10
−2

10
−1

Number of iterations

f k −
 f

*

 

 

Proposed PSGD−WA, step size=10/(10+k)
PSGD, step size=10/(10+k)
PSGD−A,  step size=0.002
ERM

Fig. 1. The error as a function of the number of iterations.

VI. CONCLUSION

We considered a least squares regression of a d-dimensional
unknown parameter. We proposed and analyzed a stochastic
gradient descent algorithms with weighted iterate-averaging
that uses a single pass over the data. When the constraint
set of the unknown parameter is bounded, we provided an
explicit O(1/k) upper bound on the convergence rate, showing
that the variance term dominates the error and decreases with
rate 1/k, while the term which is related to the size of the
constraint set decreases with rate log k/k2. We then compared
the asymptotic ratio ρ between the convergence rate of the
proposed scheme and the empirical risk minimizer (ERM) as
the number of iterations approaches infinity. Under some mild
conditions, we showed that ρ ≤ 4 for all d ≥ 1. We further
improved the upper bound by showing that ρ ≤ 4/3 for the
case of d = 1 and when the parameter set is unbounded.

It should be noted that SGD with a constant step size does
not converge to the global optimum in general [29], [30]. Thus,
it is desirable to analyze the proposed PSGD-WA algorithm
with decreasing step size under other loss functions (e.g.,
logistic regression) as a future research direction.
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