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ABSTRACT
In collaborative medical research settings, a moderate number
of groups (sites) may wish to merge local analyses of private
subject data. Differential privacy offers one way to guaran-
tee privacy for these local analyses. We describe a novel en-
semble learning method that we call the “feature method” for
aggregating binary classifiers or regressors trained on local
data. Our method leverages a public data set available at the
aggregator to optimize a linear combination of local predic-
tors. We provide some analysis of the method and show how
it is effective when the local sites are required to learn classi-
fiers that are differentially private. We prove that this method
has near-optimal performance when local data sets are large
enough under certain requirements on the parameters. Exper-
imentally, we give a comparison of the feature method and
the standard approach of averaging the local classifiers.

Index Terms— distributed learning, classification, differ-
ential privacy, empirical risk minimization, convex optimiza-
tion

1. INTRODUCTION

This work is motivated by learning problems where private
or sensitive data is distributed across different sites. The sites
wish to collaborate to collectively learn something from their
data – leveraging a larger sample size – but must respect the
privacy constraints governing their data. Such setting arises
in healthcare and medical research systems: with the help
of machine learning tools, these systems can be made more
efficient and accurate. Likewise, in a research setting, re-
searchers would like to take advantage of multiple data sets
to enable better predictions. The extensive existing work on
distributed learning either ignores privacy constraints [1–8]
or assumes an asymptotic scenario where each site has a large
number of samples [9–11]. This is rarely true in medical re-
search settings, so we must be careful about how we aggre-
gate the information from local sites. Our method is a form of
ensemble learning [12–14] in which the goal is to construct
a new classifier by training several classifiers (an ensemble)
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and combining them. Methods such as bagging [15], boost-
ing [16], and many others have been proposed – our method
is a form of ensemble weighting [14] based on treating clas-
sifiers learned from local data as new features.

In this paper we examine in more detail an aggregation
mechanism for aggregating differentially private classifiers
studied in Sarwate et al. [17]. In our approach, each local
site trains its own linear classifier and transmits it to an ag-
gregation site. A standard approach for aggregation with a
large amount of data is to average the resulting weight vec-
tors from the classifiers [4, 5, 8]. However, if the aggregation
site has its own data, it can use this data to weigh the classi-
fiers from the local sites, thereby achieving an improvement
in accuracy [17]. The aggregation site does this by treating
the local classifiers as features, projecting its data onto these
features, and training a lower-dimensional classifier in this
new feature space. As we show, this is equivalent to taking
a weighted average of the local classifiers – we call this the
feature method.

We also study the scenario in which the local classi-
fiers are trained using a differentially private training algo-
rithm [18]. Differential privacy provides a way to quantify
the privacy risk incurred by running an algorithm on sensitive
data [19]: it measures the risk of an individual data point
being identified from the output of the algorithm. Differential
privacy basically guarantees that an analyst observing the
output does not learn too much about any individual’s mem-
bership in the database. Algorithms that guarantee differential
privacy are randomized by introducing noise or randomness
to the computation – this noise masks the contribution of
individual data points [20, 21].

Experimental validations show that feature method has a
significantly better performance than the traditional average
method. More importantly, this method has higher empirical
stability when the local classifiers are trained using differen-
tial privacy.

2. PROBLEM MODEL AND DEFINITIONS

We consider a distributed system where there are N ≥ 2 lo-
cal sites with data sets Di = {(xi,j , yi,j) : j = 1, 2, . . . ,mi}
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consisting of mi pairs of feature vectors xi,j ∈ Rd and bi-
nary labels yi,j ∈ {−1,+1}. We focus on problem of linear
classification: the goal is to find a vector f ∈ Rd such that
sgn(f>x) is a good predictor of the label y. If we model the
data as being drawn independently and identically distributed
from a fixed but unknown distribution P(x, y), a good train-
ing algorithm for finding such an f is the regularized empiri-
cal risk minimization (ERM), which outputs the minimizer of
the following objective function.

J(f,Di) =
1

mi

mi∑
j=1

`(f>xj , yj) + ΛRi(f), (1)

where `(·, ·) is a loss function (e.g. hinge loss for support vec-
tor machines) and Ri(f) is a regularization term. In section 4
we will focus on the case where ` is the hinge loss and logistic
loss. We also set Ri(f) = ‖f‖22.

We are also interested in the case where each site trains
a local classifier under differential privacy [19], a privacy
framework that has received significant research attention in
recent years (see a recent monograph [20] and survey [21]).
Differentially private algorithms are randomized in order to
prevent someone observing the output from identifying indi-
vidual data points from the training set D. A classification
algorithm Alg guarantees ε differential privacy if for all D
and D′ differing in a single point:

P (Alg(D) ∈ F) ≤ eεP (Alg(D′) ∈ F) (2)

for any measurable set F . We consider local classification
rules trained using the objective perturbation method [18],
which is a differentially private version of ERM.

In the algorithms we consider, each local site i uses ei-
ther the non-private ERM in (1) or its differentially private
version [18] to train a local classifier fi based on its data set
Di. It then transmits these classifiers to an aggregation site.
In our model we further assume the aggregation site has an
ancillary data set D0 of m0 pairs (x0,j , yj). Our goal is to
take advantage of this extra data to design a better algorithm
for aggregating {fi}. For simplicity, we assume that D0 is
a public data set so that algorithms on that data set need not
guarantee differential privacy.

3. AGGREGATION METHODS

We are interested in the problem of ensemble learning, or
classifier aggregation. In applications such as neuroimaging
for mental health, each local site’s data set Di often has few
data points due to the expense of measuring and the rareness
of the condition. A classifier fi trained on local data using
ERM (private or non-private) may have high classification er-
ror, and the variance across sites may be large. A large-scale
machine learning approach [1,4,5,8] is to simply average the

N classifiers trained at the local sites:

f̄ =
1

N

N∑
i=1

fi. (3)

We call this the average method. This method does reduce
the variance across the {fi} but may still lead to poor perfor-
mance when the local classifiers are themselves poor. Boost-
ing [16] may yield better performance but is more effective
when the number of sites N is large, which is not the case
in our motivating application. In addition, neither of these
methods takes advantage of the data D0 available at the ag-
gregation site.

Algorithm 1 Feature method for classifier aggregation

1: Inputs: Data sets {Di}, local training algorithms Algi,
i = 1, · · · , N , aggregation set D0.

2: for i=1,2,. . . , N do
3: Compute fi = Algi(Di) and send to aggregation site.
4: end for
5: Form matrix Mf whose ith row is classifier f>i .
6: Form transformed data set:

D̃0 = {(Mfx0,j , y0,j) : j = 1, 2, . . . ,m0}.

7: Train ωFeat = argminω J(ω, D̃0).
8: Output: Classifier fFeat = M>f ωFeat.

The feature method in Algorithm 1 does take advantage
of the local data. It takes each local classifier fi and com-
putes a new feature f>i x0,j and then trains classifier based
only on the locally learned (one-dimensional) features from
the local sites. Although this method throws away a lot of
information, an empirical study [17] showed that it was ef-
fective at merging classifiers from structural MRIs used to
classify schizophrenia patient from healthy controls. From
the algorithm, we can see that the aggregation site is comput-
ing a weighted linear combination of local classifiers with the
weights in the coefficient vector ωFeat. The feature method
lets the data determine the importance of each local classifier
rather than the equal weights used in the average method.

As we can see, both the f̄ and fFeat lie in the subspace
span{fi} spanned by local classifiers. We define the optimum
linear combination as:

f∗span = argmin
f∈span{fi}

L(f), (4)

where L(f) = E(x,y)∼P [`(fTx, y)] is the expected loss un-
der a classifier with inputs (x, y) drawn according to P(x, y).
We define the corresponding coefficient vector ω∗ by f∗span =

M>f ω
∗. We would like to characterize how close fFeat is to

f∗span. The global minimizer f∗ = argminf L(f) does not
necessarily belong to span{fi}.
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Fig. 1. e vs. m, non-private for MNIST

We make following assumptions: (1) the loss `(·, ·) is con-
vex with respect to (w.r.t) the first parameter, (2) the regu-
larizers Ri(·) is λ-strongly convex and µ-smooth, (3) the ex-
pected gradient of the loss is bounded as E

[
‖∇l(·, ·)‖2

]
≤ C,

and (4) the regularization function at the aggregation site is
bounded at the optimum as E

[
‖∇R0(ω∗)‖2

]
≤ C ′.

We are interested in the impact of requiring the local clas-
sifiers to be learned under differential privacy [18]. We com-
pare two cases: a “baseline” case with all non-private data,
and a “public-private” case with private data at the sources.

Theorem 1. (Feature method in two cases) We have the fol-
lowing upper bound on the expectation (over the data distri-
bution) of the error between fFeat and f∗span for local classi-
fiers learned without differential privacy:

E
[
‖fFeat − f∗‖2

]
= O

(
N

mm0

)
+O

(
N

m

)
+O

(
N

m0

)
+ CN . (5)

For local classifiers learned under ε-differential privacy, in
expectation over the data and the privacy mechanism,

E
[
‖fFeat − f∗‖2

]
= O

(
N

m2ε2

)
+O

(
N

m0m2ε2

)
+O

(
N

mm0

)
+O

(
N

m

)
+O

(
N

m0

)
+ 2CN . (6)

where CN is a constant that depends on the number of local
sites N .

The Theorem shows the effect of enforcing ε-differential
privacy on local sites in terms of the excess error. Because
N is finite in our model, there is an unavoidable gap CN that
depends on N but not m, m0 and ε; the dependence on those
parameters is captured in the order-terms. We can generalize
these bounds when each site has its own local ε value.
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Fig. 2. e vs. m, non-private for Covertype

4. EXPERIMENTS

We performed extensive experiments to see how our method
performed against average-at-the-end methods for learning
under differential privacy. We primarily focus on the “Public-
Private” setting in which the aggregator’s data is public but
the local data sites are private. We performed experiments on
MNIST [22] and Covertype [23] data sets.

We use misclassification error rate to measure perfor-
mance in our experiments. For any linear classifier f and a
data point (xj , yj), we define misclassification error ej as:

ej =

{
1 if yjf

Txj < 0
0 if yjf

Txj ≥ 0.

The error rate is the average of ej over the test set.
From now on, we denote by e(ε,N,m,m0, h,Λ) the er-

ror rate and associated parameters. We use ‘FL’, ‘AL’ as er-
ror rates of the feature method and the average method with
privacy only at the local sites in legend, respectively. With
same meaning, ‘AN’, ‘FN’ are the corresponding error rates
for non-private case. In our experiments we use objective per-
turbation [18] with Huber loss [24] at all local sites, where h
is the Huber constant. We use regularized ERM with logis-
tic loss l(z) = log(1 + e−z) at the aggregation site. We use
digits 3 and 7 in MNIST data set with 8,678 points in train-
ing set (all local sites + aggregation site) and 3,718 in testing
set. We use cover types 1 and 2 in Covertype data set with
346,598 points in the training set and 148,543 in the testing
set. We reduce the dimension of data in MNIST data set from
784 to 50 using PCA. Each experiment was repeated 10 times
for fixed parameters and plots are shown with error bars.

As a baseline, we evaluated the performances of the fea-
ture method and average method using non private classifi-
cation at the local sites. The results are shown in Figure 1
and 2 . While the feature method outperforms the average
method on Covertype, the algorithms are nearly equivalent
on MNIST. The story becomes significantly more interesting
when we insist on privacy at the local sites.
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(a) e vs. ε from 0.025 to 0.25
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(b) e vs. m from 39 to 789
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(c) e vs. N from 2 to 50
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(d) e vs. ε from 0.025 to 0.25
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(e) e vs. m from 3151 to 31509
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Fig. 3. Performance of algorithms for MNIST (top row, Λ = 10−2) and Covertype (bottom row, Λ = 10−7) for N = 10,
h = 0.5. Error e versus ε ∈ [0.025, 0.25] (3a,3d) , m (3b from 39 to 789,3e from 3151 to 31509), and N (3c,3f)

.

Our goal of first experiment is to test the performance of
the two methods w.r.t m. We compare the two methods by
plotting curves of error rate in Figure 1 and 2. Introducing
noise for differential privacy can significantly increase the er-
ror of the overall classifier, as suggested by our theoretical
result. Here, however, the feature method is significantly bet-
ter as m increases. Figures 3a and 3d show how performance
is affected by the privacy parameter ε. From these two figures
we can see that the feature method performs much better than
average method and less affected by the privacy-preserving
noise. Since the average method does not use auxiliary infor-
mation in the data set, it has significantly poorer performance.
Under the “Public-Private” condition, for both methods, in-
creasing ε makes the final performance better and the feature
method works better than the average method.

Thirdly, we want to know how m affects the performance
of the average method and the feature method. We compare
two methods in Figure 3b and 3e. We have a similar stabil-
ity for feature method shown as that in the last experiment.
Unsurprisingly, increasing m improves both methods, but the
feature method has more consistent performance.

Finally, we compare the feature method with the average
method in Figure 3c and 3f as a function of N . Our analy-
sis does not indicate how performance should scale with N .
For sufficiently large N ≥ d the span of the local classifiers
will in general be Rd so the optimal linear combination would
be the distribution-optimal classifier. However, for increasing

N < d under a fixed amount of data, the local classifiers will
become worse (m is lower) and the feature method appears to
be a significantly better way of combining the local classifiers
than the average method. We may conclude that under proper
choice ofN , increasingN makes the final performance better
and the feature method works better than the average method.

5. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed a novel aggregation method to
improve the performance of distributed classification system.
The key idea is to take the advantages of public-accessible
data site and use it to weight the local classifiers. We tested
three important parameters in the system and the differentially
private version of this method shows significantly better per-
formance and stability property compared with averaging the
local classifiers. In particular, when the local classifiers are
learned in an ε-differentially private way, the average method
has significantly worse variance since it cannot take advan-
tage of the local data. The major difference between our
method and other ensemble learning approaches [14] is that
we have an auxiliary public data set. However, it would be
interesting to see how the feature method can be improved
using ensemble learning techniques. In particular, for larger
N with a fixed total data set, boosting may yield significant
empirical improvements.
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