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ABSTRACT

We consider the problem of recognizing objects in collections of art
works, in view of automatically labeling, searching and organizing
databases of art works. To avoid manually labelling objects, we in-
troduce a framework for transferring a convolutional neural network
(CNN), trained on available large collections of labelled natural im-
ages, to the context of drawings. We retrain both the top and the
bottom layer of the network, responsible for the high-level classi-
fication output and the low-level features detection respectively, by
transforming natural images into drawings. We apply this proce-
dure to the drawings in the Jan Brueghel Wiki, and show the trans-
ferred CNN learns a discriminative metric on drawings and achieves
good recognition accuracy. We also discuss why standard descriptor-
based methods is problematic in the context of drawings.

Index Terms— Object recognition, neural network, transfer
learning, signal processing.

1 Introduction
In visual arts, objects created by artists are not exact representations
of objects in the external world. However, it takes little effort for
viewers to recognize objects and scenes in paintings and drawings
up to a high level of abstraction and distortion, recognizing even
objects that do not exist in the real world. In the case of natural
images and photographs, object recognition in computer vision has
recently achieved a sequence of breakthroughs, with an ensemble
of ideas and techniques, including feature selection and dictionary
learning [1], hierarchical representations [2], Convolutional Neural
Networks (CNNs) [3] with large rich image repositories and chal-
lenges (e.g. ImageNet [4, 5] database, Pascal challenges [6], among
many others). Taking advantage of its hierarchical structure inspired
by the layers of processing in primate brains, deep CNNs have even
surpassed human-level performance [7], automatically learning low-
level features such as blobs and directional high-frequency filters
used in classical image processing. For recognition of more abstract
objects like drawings and sketches, it is unclear whether CNN can
work equally well as for natural images, or how one can utilize ob-
ject structures encoded in CNN trained on natural images to perform
efficient recognition on drawings with minimal or no supervision.

To investigate these questions, we examine a data set of drawings
from the Jan Brueghel Wiki1. We first discuss the difficulty in using
standard descriptor based techniques. We then move on to applying
CNNs: this is problematic too since the Berkeley data set is limited
in size per class, hence it is impossible to train a CNN directly on it.
We then propose to adapt a CNN trained with ImageNet, an artifi-
cial visual system trained to recognize a variety of objects in photos

∗This research was partially supported by award NSF-DMS-1320655.
1http://www.janbrueghel.net/Main_Page

of real-world scenes, to our drawing dataset. In order to do this,
we generate an artificial drawing dataset for training by perform-
ing signal processing operations on ImageNet; the transferred CNN
achieves very good accuracy. It is important to remark that no labels
on the drawings are needed for this transfer process (they are only
used to measure predictive performance): we note however that the
process of transfer we describe cannot be considered unsupervised,
since the set of transformations and processing performed on Ima-
geNet to create “drawing-like” images does use knowledge about the
test set of drawings. Moreover, our analysis of the structure of the
transferred CNN shows that it may be useful to construct effective
discriminative metrics on images, which is encouraging towards the
goal of constructing a search and recognition engine for objects in
drawings and artworks.

The paper is organized as follows: in Section 2 we introduce the
Berkeley drawing dataset and describe the collection procedure. In
Section 3, we discuss the applicability of descriptors constructed for
natural image processing to drawings. In particular, we show that
SIFT descriptors are not robust for object recognition in drawings.
In Section 4, we show two different ways of adapting the bottom
layer of a CNN and analyze how categories of objects are structured
through layers of processing by visualizing the inter-category and
intra-category distance of deep features obtained from the network.

2 Berkeley Drawing Dataset

The Berkeley dataset contains over a thousand paintings, drawings

Fig. 1: Sample Drawings in the Berkeley
JB dataset

and prints of baroque
artist Jan Brueghel
and his vast network
of assistants, rela-
tives, and collabo-
rators, ranging from
world-famous (Pieter
Brueghel, Rubens) to
utterly obscure. The
images are available
online at Jan Brueghel
Wiki1. This collection
contains drawings of
highly varying con-
texts (from seascapes
to flower still lifes)

and quality (from compressed low-resolution, low-contrast prints to
high-resolution photos; see Fig. 1).

Featured objects appearing across different drawings are manu-
ally selected and cropped from the original drawings, in a size range
of 38×38 to 1700×1700 pixels. Among all the available drawings,
we collected sets of drawn objects consisting of 92 cows, 105 sail-
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Fig. 2: SIFT descriptors matched in two drawings of cows, each pair
of matched descriptors (algorithms and code from [12]) is shown in
a unique color

boats and 34 windmills. We also collected sets of combined objects
(scenes): 61 boats with people and 236 horse carts. Each cropped
region contains at least one instance in the corresponding category in
the center, occupying at least 70% of the whole region. Any instance
identified by human perception is cropped and labelled regardless of
the quality or size of the cropped image.

3 Descriptor-based Methods
A natural and popular approach to object recognition problems is
through the use of descriptor-based classifiers. We describe here our
attempts and the problems we encountered with this approach; these
observations may apply more generally to image data sets that are
significantly different from those consisting of natural images (to
which these descriptors were tuned and successfully applied).

Descriptor-based image classifiers are very successful in com-
puter vision tasks such as face recognition [8], Bag of Words model
for object matching [9], and deformable part model for object detec-
tion [10]. The building blocks of these classifiers are task-oriented
descriptors that efficiently encode feature information of objects in
images. The ideal descriptor should be robust/invariant to variations
of an object and be discriminative to different classes of objects. It
has been noted that discriminative descriptors that are not highly fre-
quent in the dataset suffer from high quantization error, resulting in
degradation of their discrimination power [11]. We therefore focus
on models based on generic descriptors.

Similar to object recognition in natural images, we are looking
for representations of object features in drawings that are invariant
to scale, contrast and small rotations. These requirements are sat-
isfied by the SIFT descriptor [13] (we use the implementation of
[14]), which favors local ”corner-like” features and is widely used
in computer vision and image processing. In our dataset, as in most
others, salient SIFT descriptors are generated both at features of in-
terest and other irrelevant locations due to variations of objects or
background. When comparing the similarity of two images, we seek
to consider the set of consistent SIFT descriptors in both images.
Such a robust SIFT descriptor matching is possible when two images
differ by an affine transform with bounded distortion [12]. Unfortu-
nately, we find that this model of distortions is not sufficient to tackle
the variability of shapes in our drawing dataset. Even for drawings
looking highly similar to the human eye, the two sets of SIFT de-
scriptors extracted are highly affected by the background and by lo-
cal deformations of the objects of interest. Fig. 2 shows that even
the consistency between robustly matched SIFT descriptors is weak.
This inconsistency is caused by local and global feature deforma-
tions, background, different relative sizes of object parts. Although

these issues occur in natural image object recognition where these
techniques have been successfully applied, the flexibility/elasticity
seems much larger in drawings, making regularization of deforma-
tions while matching SIFT descriptors particularly problematic.

4 Transfer of a Neural Network
Instead of manipulating and matching unsupervised descriptors, we
use a deep convolutional neural network where discriminative de-
scriptors are automatically learned. However we have too few la-
beled cropped drawings to train such a network. The idea is then to
use an “off-the-shelf” CNN model [3] that has been trained on a large
data set of natural images (ImageNet) and shown to have the ability
to correctly recognize a large number of objects with huge variations
in appearance in the training and test data. Here we view the pre-
trained CNN as an “artificial vision system” that, while trained on
natural images, could possibly be adapted to significantly different
sets of images. Similarly to humans taking advantage of their knowl-
edge from the real world in recognizing abstract objects in art [15],
transferring knowledge from a pre-trained CNN might be able to as-
sist recognition in art drawings that are significantly different from
the natural images used to trained the CNN model. The different
nature of the classes of objects requires re-training the top layers of
the CNN model; because the fine structures and features of drawings
are different as well, this motivates us to also re-train the bottom
layer of the CNN model. In order to do this, we create a new train-
ing set bridging the two, by transforming ImageNet labelled images
into drawing-looking images, and we use these (already labelled!)
images – or rather, a subset containing only the classes of interest
– to partially retrain the CNN. While no new labels are needed in
this step, we do not consider this as completely unsupervised learn-
ing, since the transformation that generates “drawing-like” images
from natural images is purposefully designed. We now describe
these steps in detail, then present and discuss classification results
and their dependence on how we re-train the CNN model, and fi-
nally present a quantitative investigation on how the drawings are
structured by the transferred CNN.

4.1 Adapting and transferring the highest layer

We use BVLC Reference CaffeNet in the caffe package [16], an
implementation of AlexNet trained on ImageNet ILSVRC 2012 in
[3], as our pre-trained model, and we call it CNNref in this paper.
Since cow and windmill are not included in the 1000 categories of
ILSVRC 2012, we substitute the last fully connected layer in CNNref

with layers for classification of categories in our drawing dataset.
This technique was first used in [17] to transfer features in middle
layers, while substituting the top layer for two sequential layers.

To train the new top layer, we need a training set of images that
share the same low- and mid-layer features with the ILSVRC dataset.
Therefore, for each category in the drawing dataset, we find the clos-
est synset in ImageNet, and collect the corresponding sets of images
as our ImageNet dataset, which we denote by I. We selected the
cow, cart, rowboat, sailboat and windmill synsets in ImageNet (ID
n02403454, n02970849, n03199901, n04128499, n04587559 respectively).
For the drawing category “people & boat”, we pick the “rowboat”
synset, which frequently includes people. With the same procedure
of fine-tuning CaffeNet for style recognition on “Flickr Style” data2,

2caffe tutorial: http://caffe.berkeleyvision.org/gathered/
examples/finetune_flickr_style.html
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we re-train CNNref with a new top layer and call it CNN5
top.

Fig. 3 (green bars, right panel) shows the prediction accuracy
when testing on drawings. Despite the high accuracy in the horse
cart category, 46% of cow drawings are recognized as cart, and the
network performance is severely biased. We conjecture that this
is due to drawings lacking color, with objects often sketched with
rough curves instead of the well-delineated closed geometric shapes
filled with color occurring in natural images. To let the CNN better
adapt to these features of drawings, that are significantly different
from those of natural images, we push the CNN transfer mechanism
further by re-training also the bottom layer in CNNref , which is re-
sponsible for the extraction of low-level features. This goes beyond
the work of [17] where only the top layer (a fully connected layer
whose main purpose is classification) is changed. The transferred
CNN’s obtained from CNNref by re-training the bottom and top lay-
ers, are called CNNnew.

4.2 Adapting the bottom layer in CNNnew

We are unable to train a new bottom layer in CNNref on drawings,
due to data scarcity. We thus propose to generate “drawing-like”
images Idrawfrom the subset of ImageNet images I so that there is
sufficient data for training and validating the CNN.

We apply two transformations on the natural images from I (pro-
cessing done with ImageMagick) to obtain Idraw. First we convert
each color image I ∈ I to a gray scale 256 × 256 image, by scal-
ing with fixed width-height ratio and mirroring across boundaries to
pad. The grayscale image is then mapped to a “drawing-like” image
Idrawby taking the difference of the gray images and their Gaussian
blur, to enhance edges, followed by a contrast-normalization step.

We experiment training CNNnews using the “drawing-like” im-
ages by themselves, or together with subImageNet, on a subset
of categories (cow, sailboat, windmill), yielding CNNdraw,3

new and
CNNall,3

new respectively. In the training phase, the new layers are ini-
tialized using random weights, and are assigned a fast learning rate
of 10, and the remaining layers are initialized using weights from
CNNref , and assigned a slow learning rate of 1. The training and val-
idation sets are kept fixed, and no pair (I, Idraw) is ever split across
different sets. During the training phase the optimization parameters
are tuned to achieve the best possible prediction performance on the
validation set, typically higher than 92% and we stop optimizing
when a model starts to overfit. To compare different settings of the
training data, we trained CNNnew on three categories, cow, sailboat
and windmill, that are quite distinct from each other. Fig. 3 shows
the confusion matrices for the predictions of the transferred CNNs
when tested on drawings.

The CNN3
top is the baseline network where only the top layer,

but not the bottom layer, are transferred, and its prediction is bi-
ased to windmill category. The accuracy of CNNdraw,3

new (trained on
“drawing-like” images Idrawonly) improves over that of CNN3

top,
with accuracy on cow drawings boosted from 70% to 93%, at the
price of a drop in the accuracy of windmill drawings, 82%. As there
are three times as many drawings of cow as that of windmill, the
overall prediction accuracy also has increased. CNNall,3

new , trained on
both I and Idraw, has even better accuracy in the sailboat category,
and overall prediction accuracies over 90% for all 3 categories. See
Fig. 3.

We also trained a CNNnew on all 5 categories, called CNNall,5
new ,

using both I and Idraw, obtaining our best accuracy of 77% over
the drawings. As shown in Fig. 3, the bias of CNN5
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Fig. 3: Confusion matrix of drawings predicted by CNNdraw,3
new ,

CNNall,3
new , CNN3

top(left) and CNNall,5
new , CNN5

top(right). The percent-
ages are computed within each drawing category.

Fig. 4: Visualization of the bottom (convolutional) layer in networks
trained on five categories. Left: CNNall,5

new trained with “drawing-
like” and color ImageNet images. Right: CNN5

top trained with color
ImageNet images.

disappears when using this CNNall,5
new , with prediction accuracy in-

creasing in all categories but horse cart. We were however unable
to obtain accuracy for these 5 classes of drawings comparable to the
one obtained for 3 classes. We conjecture that the main difficulty
brought by the additional two categories, horse carts and rowboats,
is that they are similar in content to cows and sailboats categories
and the object composition is more complicated. The loss of color
information and high-frequency details due to the transformation to
“drawing-like” images may also limit the discriminating power. We
also note that in this case the accuracy on the validation set is over
90% (which does not include drawings), much higher than on the
test set of drawings.

4.3 Feature space structure of CNNnew

We are interested in understanding some of the changes in the CNN
upon transfer. Understanding the learned features, and their relation-
ships, in a trained CNN is not an easy task, with no existing standard
procedures. We start by comparing the first convolution layer of any
of the CNNnews to that of the CNNtop. Fig.4 shows the 96 filters of
size 11 × 11 for CNNall,5

new and CNN5
top in the same order. Almost

half of the filters in CNN5
top are color blobs and the remaining are

high frequency filters in various directions. In comparison, the fil-
ters of CNNall,5

new show patterns similar to the high-frequency filters
of CNN5

top in the corresponding location, but they are more noisy
and present no high-frequency features. On the other hand, the fil-
ters look like textures in the channels where original color blobs are:
when gray scale drawing-like images are used in training, color in-
formation is no longer helpful but the textures are.

To further investigate the feature space structure of CNNnew, we
consider the output fk ∈ RNk×Ck of each layer k for an image pro-
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Fig. 5: Matrices of cos(θk) of the CNNnew. Network layers in-
crease in depth from left to right, top to bottom. Images are grouped
into blocks of “drawing-like” images, (cart, cow, rowboat, sailboat,
windmill), drawings (in the same categorical order)

cessed through the network, whereCk is the number of channels and
Nk is the dimension of output in each channel. For convenience,
we reshape fk into a vector. Each convolutional layer of a CNN
generates non-linearly a new feature space from the previous one,
hence each fk is a feature descriptor of the image at a certain level
of the hierarchical structure. We define the similarity at layer k of
two images Ii, Ij as the cosine of the angle θi,jk between f i

k, f
j
k at

each layer k. Note that since all the entries of fk are nonnegative,
cos(θi,jk ) ∈ [0, 1]. If images are embedded in an ideal Euclidean
feature space, images from the same category should be close, with
a small angle between them, whereas those from different categories
should be farther away. We monitor the behavior of angles between
fks of images from the same and across different categories, to de-
cide if the feature space learned by a CNN is helpful in discrimi-
nating among images in different categories. We randomly selected
100 images from each of the five categories of “drawing-like” im-
ages and drawings (if the total number of drawings in a category is
smaller than 100, we use all the drawings in that category) and in
Fig. 5 we show the similarity matrices [Mk]i,j = cos(θi,jk ) for the
layers of CNNnew. The images are arranged in the order of cate-
gories. At the top left we see that the input images are not well-
clustered in category: even drawings in the same group have low
similarity (the dark blue pattern). Going through the panels from left
to right, top to bottom, structures emerge in the similarity matrices;
in the bottom right matrix five blocks on the upper left diagonal, cor-
responding to five categories in “drawing-like” images, are visible.
The two big blocks on the lower right diagonal correspond to draw-
ings being well-separated into two subgroups. Furthermore, there is
strong correlation off-diagonal between “drawing-like” images and
drawings in the corresponding categories. This demonstrates that
the network learns features from “drawing-like” images and trans-
fers them to drawings. To summarize, a transferred discriminative
metric emerges.

To further quantify the linearity of the deepest feature space, we
build a binary linear SVM classifier for each drawing category using
only the output features of the same “drawing-like” images as in Fig.
5 from the second-to-last fully-connected layer of CNNall,5

new . The
binary classifier is then tested on both “drawing-like” images and
drawings. The result is shown in the top of Fig. 6, where the clas-
sifiers are very robust to “drawing-like” images, meaning that dif-
ferent categories are well separated by linear subspaces in the deep-
est feature space of CNNall,5

new . Furthermore, the classifiers achieve
comparable performance on the drawings, indicating that “drawing-
like” images and drawings in the same category are close in the fea-
ture space. In addition, we can train binary classifiers directly on
the deepest feature of drawings to obtain better classification perfor-
mance, see the bottom of Fig. 6.

Finally, we quantify the similarity in style between drawings

cart vs. all

cart

cow vs. all

cow

rowboat vs. all

rowboat

sailboat vs. all

sailboat

windmill vs. all

windmill

drawing-like image, train drawing-like image, test drawing, test drawing, train

0 1-2 0 1-2 0 1-2 0 1-2 0 1-2

cart

cow

rowboat

sailboat

windmill

Fig. 6: Binary linear SVM’s classification result of five categories
trained on the deepest output feature of CNNnew. Top: trained with
drawing-like images, bottom: trained with drawings.

and “drawing-like” images. It is observed in [18] that information
about image content and style are encoded separately in a CNN.
In particular, images of different content but the same style have
small Euclidean distance between their covariances fT

k fk, where
fk is as above the output from different channels in a convolu-
tion layer, but is now formatted to be a matrix Nk × Ck instead
of a vector as above. As the layer goes deeper, the “style” in-
formation stored in the covariance evolves from local to global.

Fig. 7: Distance matrices of chan-
nel covariance from the top and
the bottom convolution layers in
CNNall,5

new

Fig. 7 shows the distance
matrices of covariance of the
top and the bottom convolu-
tion layers from the same im-
ages in Fig. 5. For the
low-level local style, the lo-
cal features of drawings and
“drawing-like” images look
different as inter-source dis-
tance is bigger than intra-

source distance. For the high-level global style, the inter-source
distance is almost the same as the distance between “drawing-like”
images, but it is bigger than the distance between drawings: the
“drawing-like” images have higher diversity in composition than
drawings.

5 Conclusion
We have introduced a novel way of transferring a CNN trained on a
large collection of pictures of real world images to perform recogni-
tion tasks on images of a very different nature, specifically art draw-
ings from the Jan Brueghel Wiki. We do so without the need of any
label on the drawings, by re-training only the top and bottom lay-
ers of the CNN on “drawing-like” versions of the real world images,
jointly with the original image set. The transferred network has sig-
nificantly increased performance in recognizing objects, compared
to the original one. We also study the changes in the layers of the
transferred CNN, showing it learns useful features that may be used
in future work to introduce a discriminative metric for developing a
search engine for objects in drawings.
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