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ABSTRACT

The problem of online learning and optimization of unknown
Markov jump linear models is considered. A new online learn-
ing algorithm, referred to as Markovian simultaneous perturbations
stochastic approximation (MSPSA), is proposed. It is shown that
MSPSA achieves the minimax regret order of Θ(

√
T ). Using the

Van Trees inequality (stochastic Cramér-Rao bound), it is shown
that Θ(

√
T ) is the lowest regret order achievable. Simulation results

show scenarios that MSPSA offers significant gain over the greedy
certainty equivalent approaches.

Index Terms— Online learning, stochastic approximation,
stochastic Cramér-Rao bound, continuum multi-armed bandit, se-
quential decision making

1. INTRODUCTION

Markov jump models are widely used in signal processing, commu-
nications, and control. Some of the applications in signal processing
are highlighted in [1, 2]. See also [3] for an extensive coverage and
relevant applications.

In this paper, we consider the problem of online learning and
optimization of Markov jump linear models with unknown parame-
ters. By online learning and optimization we mean that the input of
the unknown model is chosen sequentially to minimize the expected
total cost or maximize the expected accumulative reward.

The model considered here is a linear (affine) model, modu-
lated by an exogenous finite state Markov chain (S, P ) where S =
{1, · · · ,K} is the state space and P = [pi,j ] the transition prob-
ability matrix. We assume that the state space S is known but the
transition matrix P is unknown.

Each state k ∈ S of the Markov chain is associated with a lin-
ear model whose model parameters are denoted by θk = (Ak, bk)
where Ak ∈ <m×n has full column rank and bk ∈ <m. All system
parameters θ = {θk} are assumed deterministic and unknown. At
time t, the input-output relation of the system is given by

yt = Astxt + bst + w
(st)
t , (1)

where xt ∈ <n is the input, yt ∈ <m the observable output, st ∈ S

the state of the system, and w(st)
t the random noise which is inde-

pendent over t with a possibly state dependent distribution.
A policy µ is defined as a sequence of decision rules, i .e.,

µ = (µ0, µ1, · · · ), such that, at time t − 1, µt−1 maps input vector
Xt−1 = (x0, · · · , xt−1), output vector Y t−1, and state vector St−1

to the system input xt at time t.The problem of online learning and
optimization is to construct a policy that achieves a given objective.
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We measure the performance of a policy µ by the accumulative
cost incurred at each stage. Because xt is determined before st is
realized, the stage cost l(st−1, xt) is a function of xt and st−1. The
objective of online learning is to minimize the expected accumulated
cost

min
µ

E
( T∑
t=1

l(st−1, xt)|s0 = s

)
,

where T is the learning and optimization horizon. Note that the
above quantity is a function of system parameters θ that are deter-
ministic. In characterizing online learning policies in such settings,
it is standard to use the minimax formulation that considers the per-
formance of the best policy under the worst system parameters.

In this paper, we focus on the quadratic cost that arises naturally
from the tracking or the regulation problems. In particular, the stage
cost at time t is given by

l(st−1, xt)
∆
=E
(
||y∗ − yt||2

∣∣∣∣st−1, xt

)
, (2)

where y∗ ∈ <m is the target value for output.
As an application, the above formulation is particularly relevant

in dynamic pricing problems where the pricing signal xt is used to
induce demand yt. The idea is to set price xt sequentially to match
a certain contracted demand [4, 5, 6, 7]. Here the online learning
problem is one of exploration and exploitation, in which the price xt
must be sufficiently diverse to learn the system model and also set to
exploit the learned system parameters in some optimal fashion.

1.1. Related work and main contributions

Without Markovian jump as part of the model, i.e., |S| = 1, the prob-
lem considered here is the classical problem of control in experiment
design studied by Anderson and Taylor [8]. It is also a special case
of self-tuning regulation introduced by Aström and Wittenmark [9].
Anderson and Taylor proposed a certainty equivalence rule where the
input xt is determined by using the maximum likelihood estimates
of system parameters as if they were the true parameters.

Despite its intuitive appeal, the Anderson-Taylor rule was shown
to be suboptimal by Lai and Robbins [10]. In fact, there is a non-zero
probability that the Anderson-Taylor rule does not produce consis-
tent estimates of system parameters. For the scalar model, Lai and
Robbins proposed a stochastic approximation approach that achieves
the optimal regret order [11]. In particular, it was shown that their
technique achieves the lowest possible accumulative regret order of
Θ(log T ) . The result was further generalized by Lai [12] to the
m × m multivariate linear dynamic systems. Lai showed that the
best achievable cumulative regret remains to be Θ(log T ) when the
system matrix A ∈ <m×m is invertible.

The main contribution of this paper is the generalization of on-
line learning of time invariant linear models to that of Markov jump
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linear models. Using a multidimensional version of the Kiefer-
Wolfowitz method [13], we propose an online learning policy,
referred to as Markovian simultaneous perturbations stochastic ap-
proximation (MSPSA). We show that MSPSA achieves the lowest
regret order of Θ(

√
T ). The notion of regret is made precise in Sec

2.
A key implication of our results is that, in comparing with the

learning problem of a linear time invariant model studied in [12],
modulating a linear model by a Markov jump process introduces
substantial learning complexity; the regret order increases from
Θ(log T ) to Θ(

√
T ). As a special case, we also show that, even in

the absence of Markovian jump, when the system matrix A is not
invertible, the best regret order is also Θ(

√
T ). It worths noting

that adding just one row to a square and invertible A can change
the worst case accumulative regret from Θ(log T ) to Θ(

√
T ). This

can be interpreted as the consequence of the minimum of the cost
function is not a root anymore as in the case of single state with
square and invertible A and decision maker can’t understand how
close it is to the minimum by looking at its observations.

The results presented here are obtained using several techniques
developed in different contexts. The learning policy proposed in this
paper is a generalization of Spall’s multivariate stochastic approxi-
mation for the Markov jump linear models. To show the optimality
of the proposed learning policy, we use the van Trees inequality [14]
to lower bound the estimation error, which is a familiar technique in
the signal processing community and used to analyze online learning
by Keskin and Zeevi in [7].

The literature on online learning and optimization of time vary-
ing models, to which this work belongs, is limited. A relevant work
by Yin, Ion, and Krishnamurthy considered the problem of stochas-
tic optimization when the system parameters have Markov jump dy-
namics [15]. Their analysis deals with the infinite horizon problem
and does not provide a characterization of regret order.

Besbes, Gur, and Zeevi [16] considered a more general notion
time varying objective function where the total temporal change over
the time horizon is restricted to a ”variation budget”. Since the tem-
poral changes are assumed to be deterministic in their formulation,
the regret is defined as the difference between the cumulative cost
obtained and the cumulative cost of a clairvoyant who knows all the
temporal changes exactly and chooses the optimal input. Hence,
their characterization of the minimax regret is too pessimistic for the
Markov jump model considered here.

2. ONLINE LEARNING AND REGRET

To measure the performance of an online learning algorithm, we use
the regret as a proxy for optimization. In particular, the cumulative
regret RµT (θ, P ) of a learning algorithm µ, defined in (6), is mea-
sured by the difference between the expected accumulated cost of
the decision maker and that of a clairvoyant who knows the system
parameters and sets the system input optimally.

2.0.1. Clairvoyant policy

We begin by deriving the expected cumulative cost when the system
parameters are known. To this end, the clairvoyant’s objective is to
minimize the expected cumulative cost

min
{xt}Tt=1

E
( T∑
t=1

l(st−1, xt)

∣∣∣∣s0

)
. (3)

Since the Markov process is independent of the decision policy, the
above optimization decouples to choosing the system input xt sepa-
rately for each decision stage with stage cost

l(st−1 = i, xt) =
∑
j

pi,j
(
‖y∗ −Ajxt − bj‖22 + Tr(Σ(j)

w )
)
,

(4)
where Σ

(j)
w is the covariance matrix of w(j)

t . The optimal system
input, when (θ, P ) are known, is then given by

x∗i (θ, P ) =
(∑

j

pi,jA
T
jAj

)−1(∑
j

pi,jA
T
j(y
∗ − bj)

)
. (5)

Thus, the optimal input x∗t of a clairvoyant at any time t depends
only on the system parameter θ, transition matrixP , and the previous
state st−1 = i. In the sequel, we use x∗i to represent the optimal set-
point of the input when the system state is i, dropping the explicit
parameter dependency in the notation.

2.0.2. Regret

We are now in the position to introduce the notion of regret. The
instantaneous regret at stage t is the expected difference of the stage
cost obtained by policy µ and the stage cost of the optimal input
x∗st−1

, i .e.,

rµt (θ, P ) = E
(
l(st−1, x

µ
t )− l(st−1, x

∗
st−1

)
)

= E
(
‖Ast(x

µ
t − x

∗
st−1

)‖22
)
,

where we used the first order optimality condition for x∗st−1
. The

cumulative regret can then be expressed as

RµT (θ, P ) = E
( T∑
t=1

‖Ast(x
µ
t − x

∗
st−1

)‖22
)
. (6)

Since the regret defined above is a function of system parame-
ters, we characterize the performance of µ by the worst case regret

R̄µT
∆
= sup

θ,P
RµT (θ, P ).

Note that R̄µT grows monotonically with T . We are interested in the
learning rule that has the slowest regret growth.

3. AN ORDER OPTIMAL ALGORITHM AND
PERFORMANCE ANALYSIS

3.1. MSPSA: An online learning algorithm

In this section, we develop an online learning policy that achieves the
slowest growth rate of regret. Referred to as MSPSA, the algorithm
is an extension of the simultaneous perturbation stochastic approx-
imation (SPSA) algorithm proposed by Spall [13] to Markov jump
linear models. Our algorithm applies to cases where the decision
maker knows a convex compact set Πi ⊂ <n , e.g., Πi = [li, ui]

n,
containing the optimal solution x∗i for each state i ∈ S.

SPSA is a Kiefer-Wolfowitz type algorithm that updates the es-
timates of the optimal solution by a stochastic approximation of the
objective gradient. The key step is to generate two observations cor-
responding to two randomly perturbed inputs and use them to con-
struct gradient estimates. In applying this idea to Markov jump linear
models, a complication arises due to the uncertainty associated with
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the system state at the time when the system input is determined;
consecutive observations may correspond to different system states.

To circumvent this complication, the key idea of MSPSA is to
keep track of the estimate x̂i of the optimal system input x∗i . When
state i is realized, a randomly perturbed x̂i is used as input for the
next stage. And the x̂i is updated only when we obtain two observa-
tions of the system output under state i.

Details of this implementation is given in Algorithm 1. First,
MSPSA policy assigns an arbitrary predetermined optimal input es-
timate x̂i,1 ∈ <n for each state. At the beginning of each period
t, MSPSA checks the previous state st−1 (line 3 in Algorithm 1),
and checks if any observation is taken using the most recent opti-
mal input estimate related to state st−1, i.e., x̂st−1,tst−1

(line 4).
If the first observation is not taken yet, MSPSA sets the input as a
randomly perturbed estimate x̂st−1,tst−1

(line 5) otherwise it sets
the input by perturbing the estimate in the opposite direction as the
first one (line 9). In line 5, a simple choice for the random pertur-
bation ∆ti,j is a Bernoulli(0.5) distribution with values +1 and −1,
and the gain sequence cti should be chosen larger in the high noise
setting for an accurate gradient estimate [17]. Then, in line 12, it
updates the optimal solution estimate by a stochastic approximation
using the stage costs calculated from both observations (line 6 and
10) and by projecting it to a convex compact set Πst−1 containing
x∗st−1

. The choice of the sequence ati , that is used in line 12 for
update, determines the step size.

Algorithm 1 MSPSA

1: Initialize:
For every i ∈ S, ti ← 1, ei ← 0, x̂i,1 ∈ <n be an
arbitrary predetermined input, and Πi be a convex
compact set contained in <n.

2: for t = 1 to T do
3: if st−1 = i is observed then
4: if ei = 0 then
5: xt ← x̂i,ti + cti∆ti

where ∆ti = [∆ti,1, ...,∆ti,n]T and ∆ti,j’s are drawn
from an independent and identical distribution that is symmetri-
cal around zero, bounded, and satisfying E[ 1

∆2
ti,j

] <∞.

6: d+
i,ti
← ‖yt − y∗‖22

7: ei ← 1
8: else
9: xt ← x̂i,ti − cti∆ti

10: d−i,ti ← ‖yt − y
∗‖22

11: ei ← 0
12: Update:

x̂i,ti+1 ← PΠi

(
x̂i,ti − ati

(d+
i,ti
− d−i,ti
cti

)
∆̄ti

)
, (7)

wherePΠi(.) denotes the euclidean projection operator onto Πi,
and ∆̄ti =

[
1

∆ti,1
, ..., 1

∆ti,n

]T.
13: ti ← ti + 1
14: end if
15: end if
16: end for

In the next section, we present the regret growth rate analysis of
MSPSA and the sufficient conditions under which these results hold.

3.2. Regret analysis for MSPSA algorithm

Let λmin,i and λmax,i be the minimum and maximum eigenvalue
of
∑
j pi,jA

T
jAj , and ti be the number of times the optimal input

estimate x̂i,ti has been updated up to time t by MSPSA algorithm.
Here, we show that the MSPSA achieves the regret growth rate of
O(
√
T ) under the following conditions on the selection of the com-

pact set Πi, and the algorithm parameters ati , and cti :
(C1) For every i ∈ S, x∗i ∈ Πi.
(C2) For every i ∈ S, ati = γi

Ni+ti
where constant γi ≥

1
8λmin,i

, and Ni ≥ 0 an integer.

(C3) For every i ∈ S, cti =
γ′i

(N′i+ti)0.25
where constant γ′i ∈

<+, and N ′i ≤ Ni an integer.
Hence, the decision maker, who follows MSPSA, needs to have

some information about a set Πi containing the optimal solution, and
a lower bound on the minimum eigenvalue λmin,i for every state
i ∈ S to satisfy (C1) and (C2). These assumptions are not restrictive
since a decision maker, who is uncertain about the underlying sys-
tem, can take the compact set containing the optimal solution or γi
as large as he wants to ensure (C1) and (C2). Especially for dynamic
pricing applications, these assumptions are reasonable and common,
e.g ., see [6, 7]. If the optimal input estimate update fluctuates be-
tween the borders of the compact set Πi at the beginning of the algo-
rithm, Ni can be taken greater than zero to prevent this fluctuation.

Let’s define optimal input estimate mean squared error (MSE)
of the MSPSA policy as ei,ti = E

(
‖x̂i,ti − x∗i ‖22

)
. The following

lemma provides a bound for ei,ti+1 in terms of ei,ti .

Lemma 1 If (C1) holds, and w
(i)
t has a finite fourth-order or-

der moment for all i ∈ S, and the MSPSA algorithm parameters
ati , cti > 0 are decreasing in ti, then for any θ, there exists some
constants C1

i , C
2
i > 0 satisfying

ei,ti+1 ≤ (1− ati8λmin,i + a2
ti8λ

2
maxiC

1
i )ei,ti + a2

ti

C2
i

c2ti

for any i ∈ S.

Due to space limitations, the detailed proofs are omitted.
Define the accumulative input MSE as

EµT (θ, P ) = E

(
T∑
t=1

‖xµt − x
∗
st−1
‖22

)
.

Using lemma 1, we provide a bound for the decreasing rate of ei,ti
and hence the growth rate of accumulative input MSE and accumula-
tive regret for appropriate choices of ati and cti . The following the-
orem shows that the MSPSA algorithm achieves the optimal growth
rate of accumulative regret.

Theorem 1 If conditions of Lemma 1 hold, and the MSPSA algo-
rithm parameters satisfy (C2) and (C3), then for any system param-
eter set θ and P , there exists a constant C > 0 such that

EMSPSA
T (θ, P ) ≤ C

√
T . (8)

We thus have
RMSPSA
T (θ, P ) ≤ λMC

√
T , (9)

where λM = max
j
λmax(ATj Aj).
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3.3. A Lower bound on the growth rate of regret

We now show that MSPSA in fact provides the slowest regret
growth. To this end, we provide a lower bound of regret growth for
all online learning algorithms.

Theorem 2 For any value of K > 1 and m ≥ n, there exists some
constants C′, C > 0 such that, for any policy µ and for all T ≥ 2,

ĒµT ≥ C
′√T , (10)

and
R̄µT ≥ C

√
T (11)

where ĒµT and R̄µT denote, respectively, the worst case cumulative
input MSE and the worst case cumulative regret.

To sketch the proof, we consider a hypothetical case in which the
decision maker receives additional observations at each period t. It
is assumed that the additional observations provided to the decision
maker are the observation values corresponding to input xµt from the
states that didn’t occur at t. Since such observations can’t increase
the growth rate of regret of the optimal policy, we establish a lower
bound for this case by showing that it is equivalent to single state
case with m > n and using the multivariate Van Trees inequality
[18] in a similar way as in [7]. In particular, the following theorem
states that there exists some system parameter θ, transition matrix P
for which the growth rate of the cumulative regret and input MSE
cannot be lower than

√
T for any policy µ.

4. SIMULATION

We present a few simulation results on the performance of MSPSA.
Note that these simulation results illustrate the performance for ”typ-
ical” parameters, in contrast to the theoretical characterization of the
worst case performance in Theorem 2.

For a benchmark comparison, we consider the greedy LSE
method in [8]. At each t, greedy LSE determines the input by using
the least square estimates of system parameters as if they were the
true parameters. If the estimates are computationally intractable
then it takes the most recent estimate of the input and adds a small
random dithering to improve the learning rate as showed in [4].
As a last step, it projects the calculated input to the predetermined
input range which is assumed to contain the optimal input value.
Although, in general, greedy LSE performed well numerically [8],
it was shown that it can lead to incomplete learning [10].

Fig. 1 shows the average performance of MSPSA and greedy
LSE under a high noise setting, i .e., σ = 20. Parameters ati and
cti were set to be 0.3/λmin,i

ti
and 7

t0.25i
, respectively.

In many cases, greedy LSE performed quite well. However, in
a high noise setting, we observed that greedy LSE’s performance
decreased significantly and its regret grew almost linearly whereas
MSPSA preserved its performance which can be seen in Fig. 1(a).
In Fig. 1(b), we plot the derivative of the logarithm of the average
regret with respect to log(t), and it can be seen that the value for
MSPSA is around 0.5 which is consistent with the theoretical result
of O(

√
T ). On the other hand, the value for greedy LSE is close

to 0.8 at T which is a significantly worse growth rate, and it has an
increasing trend as T grows. Fig. 1(c) shows the MSE between the
optimal input estimate under two policies and the optimal value. We
see that greedy LSE performed poorly due to insufficient learning
whereas MSPSA converged fast.
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(b) Derivative of log(regret) with respect to log(t)
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Fig. 1: Average performance comparison of MSPSA and the
Greedy LSE. 500 Monte Carlo runs were used to
calculate the average performance for T=10000
periods. The system with K = 4 states, and with
dimensions m = 5, and n = 5 is used. The
transition probability to any other state was set to be
0.25. Observation noise was taken as i.i.d. normal
with covariance matrix σ2Im and y∗ was taken as
vector of all 10.

5. CONCLUSION

We present in this paper an online learning and optimization algo-
rithm MSPSA for jump Markov linear model with unknown param-
eters. We establish that MSPSA achieves the lowest order of regret
growth Θ(

√
T ). Our results highlight a change of the minimum or-

der of regret growth from Θ(log T ) of the classical (non-Markovian)
linear models to Θ(

√
T ) of the jump Markov linear models. Our

simulation results verify that proposed method MSPSA can outper-
form the greedy LSE method.
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