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ABSTRACT 

 

Vocal imitation is widely used in human interactions. In this 

paper, we propose a novel human-computer interaction 

system called IMISOUND that listens to a vocal imitation 

and retrieves similar sounds from a sound library. This 

system allows users to search sounds even if they do not 

remember their semantic labels or the sounds do not have 

these labels (e.g., synthesized sound effects). IMISOUND 

employs a Stacked Auto-Encoder (SAE) to extract features 

from both the vocal imitation (query) and sounds in the 

library (candidates). The SAE is pre-trained using training 

vocal imitations of sounds not in the library to automatically 

learn more suitable feature representations than human-

engineered features such as MFCC’s. It then measures the 

similarity between the query and each sound candidate, using 

the K-L divergence and Dynamic Time Warping distance 

between their feature representations, and finally retrieves the 

closest sounds. IMISOUND is an unsupervised system in the 

sense that no training is performed for the target sound, 

nonetheless, experiments show that it achieves comparable 

performance to a previously proposed supervised system 

which requires pre-training on sounds to be retrieved. 

Experiments also show that IMISOUND significantly 

outperforms an unsupervised MFCC-based baseline system, 

validating the advantage of the SAE feature representation. 

Index Terms—Vocal imitation, information retrieval, 

automatic feature learning, stacked auto-encoder 

 

1. INTRODUCTION 

 

Vocal imitation is of great importance in human interactions. 

We use it to convey concepts of sounds that are difficult to 

describe in language [1]. This may be because the 

communicating parties speak different languages, or because 

the language description of the sound lacks the desired 

vividness (e.g., a “Christmas tree” dog barking sound), or 

even because the sound does not have a clear association to a 

language description (e.g., many computer-synthesized 

sounds). Commonly used vocal imitations are further 

abstracted into onomatopoeia and perpetuated into languages 

[2]. 

Computer systems that are able to recognize vocal 

imitations will enable novel human-computer interactions. 

For example, current sound libraries are indexed by text 

labels. To search for a sound, a user has to remember the 

sound’s text labels such as name, keyword, and the way the 

sound was produced, etc. This process can be very tedious 

when the sound library is large or when the sound does not 

have a clear association to text labels. A system that supports 

sound search through vocal imitation can make the search 

process more efficient and effective. 

However, there are several challenges to design such a 

sound retrieval system. One of the most difficult problems is 

finding appropriate feature representations for vocal 

imitations. People tend to imitate different aspects for 

different sounds. For instance, to imitate a “du-du (car horn)” 

sound, constant pitch and the time gap between the two horns 

are likely to be emphasized, while for a “cat meowing” 

imitation, timbral evolution might be paid more attention. 

Even for the same sound concept, different people may 

imitate differently in terms of pitch, timbre, rhythm, loudness, 

and their temporal evolution. On the other hand, due to the 

physical constraints of human vocal folds and tract, the 

variety of vocal imitations are confined within a small 

subspace relative to the entire sound space. 

In our previous work [3], we proposed a supervised vocal 

imitation recognition system for sound retrieval. We 

employed a Stacked Auto-Encoder (SAE) [4] to 

automatically learn features from training vocal imitations. 

We found that these learned features are more suitable to 

represent vocal imitations than those commonly-used, hand-

crafted Mel-Frequency Cepstral Coefficient (MFCC) features 

[5]. However, this system requires training imitations for the 

sound concept to be recognized and retrieved. It cannot 

retrieve sounds that do not have training imitations, which 

limits its use cases.  

In this paper, we propose a novel unsupervised system 

called IMISOUND for sound retrieval by vocal imitation. We 

adopt the SAE-based automatic feature learning module 

proposed in [3] to extract features for both the vocal imitation 

(query) and sounds in the library (candidates). We calculate 

the similarity between the query and each candidate using the 

Kullback-Leibler (K-L) divergence [6] and the Dynamic 

Time Wrapping (DTW) distance [7] between their feature 

representations. The most similar candidates are returned as 

the retrieved sounds for the query. Compared to [3], 

IMISOUND does not require any training imitations on 

sounds to be retrieved, nevertheless, experiments show that it 

achieves a comparable retrieval performance. In addition, 

IMISOUND significantly outperforms a baseline system that 

uses MFCC features for similarity calculation. This again 

validates the advantage of using SAE-learned feature 
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representations for vocal imitations over hand-crafted 

features. 

2. RELATED WORK 

 

Retrieving sounds by vocal imitation is essentially one 

instance of Query by Example (QbE) [8]. Thanks to its 

intuitive interaction, QbE has been proposed for different 

tasks in sound-related applications, such as query-by-

humming [9][10], spoken document retrieval [11][12], etc.  

Up to date little work has been done regarding sound 

retrieval by vocal imitation. Roma and Serra [13] proposed a 

system that allows the user to query sounds on Freesound.org, 

but no formal evaluation was reported. Blanca el al. [14] built 

a supervised system using temporal and spectral features and 

an SVM classifier. It hence cannot retrieve sounds that do not 

have training imitations. In addition, the hand-crafted 

features may be difficult to represent the complex acoustic 

aspects of vocal imitations of a large variety of sounds. Helén 

and Virtanen [15] designed an audio query system by 

measuring feature similarities but it again extracts hand-

crafted features. We previously proposed a supervised system 

based on automatic feature learning and an SVM classifier 

[3]. The automatically learned features have shown to 

outperform the MFCC features, however, the supervised 

nature again prevents its usage in retrieving sounds that do 

not have training imitations.  

 

3. THE IMISOUND SYSTEM 

 

Figure 1 shows the structure of the IMISOUND system. For 

the first two modules, we use the same design described in 

our previous paper [3]. Given a vocal imitation query, we first 

convert it into a constant-Q spectrogram and segment it into 

short overlapping patches. We then use a pre-trained Stacked 

Auto-Encoder (SAE) with two hidden layers to extract 

features in each patch. To achieve unsupervised sound 

retrieval, we propose to adopt the K-L divergence and DTW 

distance to calculate the feature distance between the 

imitation query and each sound candidate. Finally, we rank 

candidates according to their distances and return closest ones 

as the retrieved sounds. 
 

Feature Extraction Distance Calculation Sound RetrievalPre-processing

 

Figure 1. The proposed IMISOUND system. 

 

(1) Pre-processing: Taking a vocal imitation query, we 

first downsample it to 16 kHz. Then a 6-octave Constant-Q 

transform [16] (12 elements per octave and hop size of 26.25 

ms) is employed to convert the waveform into a logarithmic-

frequency spectrogram for the accordance with human 

hearing perception and dimensionality reduction. Then the 

spectrogram is segmented into overlapping patches. We set 

the length of each patch to 525 ms and the hop size to 262.5 

ms. This length covers the smallest phonic unit carrying 

semantic meanings [17]. Then the patches are converted into 

vectors with 1,440 dimensions for further processing. 

(2) Automatic Feature Learning: In our previous work [3], 

we demonstrated that features extracted by SAE significantly 

outperforms hand-crafted features like MFCC’s in a 

supervised vocal imitation recognition setting. Here for the 

unsupervised setting, we employ the same two-hidden-layer 

SAE (with non-tied weights) to extract features for both the 

vocal imitation query and the sound candidates in the library. 

The input layer has 1,440 neurons, each for one dimension of 

the vector. The first and second hidden layer contains 500 and 

100 neurons, respectively. After passing through the SAE, 

each patch is finally represented by a 100-d vector. To train 

the SAE, we use vocal imitations of half of the sound 

concepts in the VocalSketch Data Set v1.0.4 [18]. These 

imitations and sound concepts are not used in evaluating the 

retrieval performance of the system.  

(3) Distance Calculation: After the SAE feature 

extraction, each imitation query and sound candidate is 

represented by a sequence of 100-d vectors. The length of the 

sequence varies depending on the length of the file. We then 

measure the distance between the query and each sound 

candidate. 

If the imitation query and the sound candidate are similar, 

their feature sequences tend to resemble each other in terms 

of both the probability distribution and temporal evolution. 

Therefore we define the distance between the two feature 

sequences using both their K-L divergence (modeling feature 

distributions) and their DTW distance (modeling temporal 

evolution).  

For K-L divergence, we ignore the time information and 

view each feature sequence as a bag of feature vectors. Given 

the relatively large dimensionality (100) and small number of 

vectors (about 15) of each sequence, we further assume 

independence between different dimensions, and calculate 

the symmetric K-L divergence in the i-th dimension as 
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where P and Q represents the distribution along one 

dimension of the query and the sound candidate respectively, 

and j indexes the histogram bins within the i-th dimension. 

Figure 2 illustrates the K-L divergence calculation 

between features from a vocal imitation and a sound 

candidate. Each imitation and sound candidate is represented 

by a sequence of 100-d feature vectors. The length of a 

sequence is the number of patches in each file. For each 

dimension across all patches within one file, features obey a 

certain 1-d probability distribution (e.g., distribution P1 in 

Imitation, which can be approximated by its histogram). K-L 

divergence between the imitation and the sound candidate is 

then calculated in each dimension (e.g., K-L1 calculated by P1 

and Q1), and all dimensions are then summed together to 

obtain the overall symmetric K-L divergence DK-L. 
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Figure 2. K-L divergence calculation. 

 

K-L divergence is good at modeling mismatches in 

dynamic ranges between the imitation query and the sound 

candidate along each dimension, however, it loses temporal 

information, which can be very important in describing the 

similarity between sounds. In addition, the independence 

assumption misses the covariance between different 

dimensions. Therefore, we complementarily calculate 

Dynamic Time Warping (DTW) distance between the 

imitation query and the sound candidate, considering how the 

100 dimensions evolve collectively over time. It better 

models timbre and pitch evolution between vocal imitations 

and sound candidates. To perform DTW on the two feature 

sequences, we use cosine distance for the local cost measure 

[19], which ignores the absolute energy difference. We align 

the first vectors and the last vectors of the two sequences, and 

find the warping path that gives the lowest overall cost. The 

cost is the DTW distance we want, denoted by DDTW. 

We combine DK-L and DDTW in an L-1 space, i.e., summing 

them as the final distance. To make sure they are of the same 

scale, we normalize them by their maximal values before the 

summation. The final distance is thus calculated as 

-

-max( ) max( )

DTWK L

K L DTW

DD
D

D D
  .                  (2) 

Figure 3 shows an example of the distance calculation 

between a vocal imitation query for “marimba hit with a 

rubber mallet” and 20 sound candidates within the category 

of acoustic instruments. Most pitched sounds are of the same 

pitch. We see that the target sound “marimba hit with a rubber 

mallet” is indeed the closest to the origin (the vocal imitation) 

in this 2-d space. After listening to the sound candidates, we 

find some interesting aspects. The closest candidates (e.g., 

“thaigong”, “vibraphone (sustained)”, “piano”, 

“woodblock”, and “violin”), including the target sound, are 

all percussive sounds except “vibraphone (bowed)”. Their K-

L divergences are smaller than other candidates. We argue 

that this is because percussive sounds have a wider dynamic 

range than non-percussive sounds in each dimension, and this 

is captured by the K-L divergence. In addition, the several 

furthest candidates (e.g., “triangle”, “orchestra bells”, and 

“wind gong”) have very different frequency distributions in 

the CQT spectrogram from the vocal imitation, even though 

they are also percussive. Therefore, their 100-d feature 

vectors obtained by passing the spectrogram through the SAE 

are very different from those of the imitation as well. This 

makes both their K-L divergences and the DTW distances 

large. 
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Figure 3. Distance calculation between a vocal imitation and 

sound candidates of different acoustic instruments. 

 

(4) Sound retrieval: Distances between the imitation 

query and all sound candidates are then ranked, and 

candidates with the shortest distances are returned to the user. 

 

4. EVALUATIONS 

 

4.1 VocalSketch Data Set 

 

We adopt the VocalSketch Data Set v1.0.4 for experimental 

evaluation [18]. The dataset includes sound recordings and 

their vocal imitations in 4 categories: Acoustic Instruments 

(AI), Commercial Synthesizers (CS), Everyday (ED), and 

Single Synthesizer (SS), which contains 40, 40, 120, and 40 

recordings, respectively. Each recording has 10 vocal 

imitations from different people. 

We use all imitations of half of the recordings in each 

category, namely 20, 20, 60, and 20 for AI, CS, ED, and SS 

respectively, to train the Stacked Auto-Encoder (SAE), and 

then use the other half of the recordings and their imitations 

to evaluate the retrieval performance. Sound recordings are 

retrieved within each category instead of across all 

categories, because in practice people usually know what 

category they should be searching in for a sound concept in 

their mind.  

 

4.2 Evaluation Measures 

  

We use Mean Reciprocal Rank (MRR) [20] to evaluate the 

retrieval performance of IMISOUND:  

1

1 1Q

i i

MRR
Q rank

  ,                             (3) 

where ranki is the rank of the target sound candidate in the 

distance ranking list of the i-th vocal imitation query. Q is the 

total number of imitation queries in the experiment. MRR 

ranges from 0 to 1 with a higher value for a better retrieval 

performance. For example, an MRR value of 0.33 would 

suggest that on average the target sound ranks about the 3rd 

in the retrieved list of all sounds. 
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4.3 Baseline Methods 

 

We compare our method to several baseline systems. The first 

is our previously proposed supervised system [3]. It uses the 

same SAE to extract features from the vocal imitation query 

and sound candidates, but trains an SVM classifier from 

training imitations of the target sound to recognize the sound 

concept of the imitation query. This is to validate the 

unsupervised design of IMISOUND. The second system is 

created by simply replacing the combination of DTW and K-

L distances in IMISOUND with either only DTW distance or 

K-L distance, to evaluate the complementary nature of the 

two distances. The third system is to replace the SAE feature 

extraction module of IMISOUND with MFCC feature 

calculations. A 39-d MFCC feature vector is used, including 

the original 13 MFCC coefficients, their 13 first-order 

derivatives, and 13 second-order derivatives, which is 

commonly applied in audio and speech processing tasks. 

Different distances are also compared in this MFCC-feature-

based system. This baseline is to validate the advantage of 

automatic feature learning over hand-crafted features for our 

task. 

 

4.4 Experimental Results 

 

Table 1 shows performance comparisons between the 

proposed system and various baseline methods. We describe 

several interesting observations in the following. 

First, the MRR values of IMISOUND (first column) are 

comparable to our previously proposed supervised system in 

three out of the four categories. In the Acoustic Instruments 

category, IMISOUND even slightly outperforms the 

supervised system, achieving 0.392 MRR. This means that on 

average, the target sound is ranked around the 3rd among the 

20 recordings in that category. For the Everyday category, 

there is a big gap between IMISOUND and the supervised 

baseline. This may be due to the larger amount and diversity 

of sounds in this category. Nevertheless, the 0.109 MRR 

value suggests that the target sound is ranked between the 9th 

and 10th among the 60 recordings in the category. It is noted 

that the MRR measure is very conservative in describing the 

system’s performance in practice, since a user does not 

necessarily know precisely which sound he/she wants to 

retrieve. Sounds that are similar enough to the query should 

be all of some interest. 

Second, IMISOUND is the best in all compared 

unsupervised systems (the first 6 columns). The highest MRR 

values are in bold within the unsupervised settings in the 

table. This comparison has two aspects: (1) For all three kinds 

of distance measure, systems with automatic feature learning 

significantly outperform systems using hand-crafted MFCC 

features in all categories except Everyday. This confirms the 

finding in our previous paper [3] that automatically learned 

features are more suitable to represent vocal imitations, and 

extends it to the unsupervised retrieval setting. For the 

Everyday category, the SAE-based features achieve 

comparable results with the MFCC features, and both are 

significantly below the supervised performance. This 

suggests that the advantage of automatic feature learning 

cannot be shown in this challenging category. (2) For both 

SAE and MFCC based systems, the MRR’s obtained by 

combining of K-L divergence and DTW distance is better 

than those using either K-L divergence or DTW distance 

individually. This is because K-L divergence only measures 

the distribution difference of features, while DTW distance 

compares the difference of temporal evolution. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

In this paper, we proposed an unsupervised query-by-vocal-

imitation system IMISOUND to retrieve sounds from a sound 

library. A two-hidden-layer Stacked Auto-Encoder (SAE) is 

adopted to extract features from the vocal imitation and sound 

candidates. Then feature similarity is calculated by the K-L 

divergence and DTW distance between the vocal imitation 

and each sound candidate. Experiments show that 

IMISOUND achieves a comparable retrieval performance to 

a previously proposed supervised system. Experiments also 

show that the SAE-based features outperforms MFCC 

features, validating automatic feature learning in the 

representation of vocal imitations in the unsupervised setting. 

For future work, we would like to conduct human subject 

studies to evaluate the system’s performance in large sound 

libraries. We also would like to adopt more advanced deep 

neural networks such as Recurrent Neural Networks (RNN) 

to model the temporal evolution of vocal imitations. 

 

Category  

(No. of candidates) 

SAE-based features MFCC features Supervised 

system [3] K-L & DTW K-L DTW K-L & DTW K-L DTW 

Acoustic Instruments (20) 0.392 0.384 0.371 0.280 0.228 0.248 0.388 

Comm. Synthesizers (20) 0.318 0.283 0.284 0.212 0.236 0.187 0.326 

Everyday (60) 0.109 0.103 0.090 0.105 0.090 0.094 0.226 

Single Synthesizer (20) 0.377 0.361 0.332 0.231 0.230 0.217 0.395 

Table 1. MRR comparisons between IMISOUND and baseline systems. 
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