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ABSTRACT

Vocal impairment is a common symptom for the vast major-
ity of Parkinson’s disease (PD) subjects. And it needs long
term rehabilitation through personalized one-to-one periodic
rehabilitation meetings with clinical speech experts. The sig-
nificant challenge is that there are not enough experts to de-
liver the in-person treatments that is needed and for many
people with PD, it is difficult to visit the experts for mon-
itoring and treatments. Then there is the need for reliable
clinical tools to assist the rehabilitation. This study aims to
investigate the potential of using sustained vowel phonations
towards objectively and automatically replicating the speech
experts’ assessments of PD subjects’ voices as “acceptable”
(a clinician would allow persisting during in-person rehabili-
tation treatment) or “unacceptable” (a clinician would not al-
low persisting during in-person rehabilitation treatment). The
phonation is usually characterized by many dysphonia mea-
sures, which are extracted by clinical speech signal process-
ing algorithms. For this aim, we need to select a stable dys-
phonia measures subset, and adopt it to automatically distin-
guish the PD subjects’ voices (acceptable versus unaccept-
able). In this paper, a diversity regularized ensemble feature
weighting algorithm DREFW is presented to choose the sta-
ble dysphonia measures subset. The experimental results on
real speech rehabilitation data set have shown the proposed
algorithm can obtain high stability and classification perfor-
mance for speech assessment. The findings of this paper is a
first step towards improving the effectiveness of an automated
rehabilitative speech assessment tool.

Index Terms— Parkinson, Speech Rehabilitation, Dys-
phonia Measures, Feature Selection
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1. INTRODUCTION

Parkinson’s disease (PD) profoundly affect the lives of pa-
tients and their families. Especially, vocal impairment is re-
ported in the vast majority of PD subjects, and approximately
29% of those consider it one of their greatest hindrances as-
sociated with the disease [1]. The extent of vocal impairment
can be assessed using sustained vowel phonations [2, 3]. Then
for the rehabilitative speech treatment, the clinical speech ex-
perts should assess the sustained vowel phonations as “ac-
ceptable (a clinician would allow persisting in speech treat-
ment) or “unacceptable (a clinician would not allow persist-
ing in speech treatment). Now, the significant challenge is
the barrier of inadequate numbers of clinicians to deliver in-
person therapy, enhancing the feasibility of delivering inten-
sive treatment requirements, and relieving the logistical bur-
den of travelling to and from the clinic for in-person treat-
ment. Then it is very important to supply the convenient
system to assist the speech rehabilitation. Advances in com-
puter and web-based technology offer solutions to the prob-
lems of treatment accessibility, efficacious treatment delivery,
and long-term maintenance in rehabilitation [4]. For the reha-
bilitation system, the current study is to investigate the poten-
tial of using an objective statistical machine learning frame-
work to automatically evaluate sustained vowel phonations as
“acceptable” or “unacceptable”. Phonations are characterized
by many dysphonia measures, which are extracted by clinical
speech signal processing algorithms. In this framework, sup-
port vector machines (SVMs) [5] is preferred to classify the
sustained vowel phonation as “acceptable” or “unacceptable”
on the basis of dysphonia measures [1]. Moreover, in this
framework, another key problem is to identify the stable and
effective dysphonia measures subset for phonations evalua-
tion, i.e., choose stable information-rich dysphonia measures,
then map them to the response (acceptable versus unaccept-
able) through SVM [1]. The dysphonia measures selection
can reduce the dimensionality of dysphonia measures space to
alleviate the “curse of dimensionality” for classification and
to improve the classification accuracy of phonations evalua-
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tion. In addition, the chosen stable dysphonia measures retain
domain expertise and they can be used to detect unacceptable
voice characteristics during use of software away from ex-
pert clinical guidance, stop the patient from using voice in an
unacceptable way, and subsequently improve voice character-
istics through providing feedback.

The dysphonia measures selection can be considered as a
feature selection problem in machine learning. According to
the introduction above, the selection result should be effec-
tive and stable. Since local learning based feature selection
has been shown high performance [6], and ensemble tech-
nique can be used to improve the robustness of feature se-
lection [7, 8], then the ensemble local learning-based feature
selection was adopted in [1] for dysphonia measures selec-
tion. In order to improve the performance of dysphonia mea-
sures selection for Parkinson speech rehabilitation, a diversity
regularized ensemble feature weighting algorithm-DREFW is
presented in this paper. The base feature selector in this en-
semble is also based on local learning, moreover, the diversity
between base selectors is considered in ensemble model. It is
well-known that the generalization error of an ensemble is
related to the average generalization error of the base learn-
ers and the diversity among the base learners. Generally, the
lower the average generalization error (or, the higher the aver-
age accuracy) of the base learners and the higher the diversity
among the base learners, the better the ensemble [9]. The ex-
perimental results show DREFW obtains higher identification
performance for Parkinson speech rehabilitation in most cases
without sacrificing the results stability.

2. DIVERSITY REGULARIZED ENSEMBLE
FEATURE WEIGHTING-DREFW

2.1. Components of Ensemble Feature Selection

Ensemble feature selection firstly create a set of different base
feature selectors, each provides its output (feature weighting
vector or a feature subset), then aggregates the results of all
base feature selectors to obtain the ensemble result [7]. In
other words, ensemble feature selection consists of two com-
ponents, i.e. the base feature selectors and the combination
strategy of their output.

To produce the base feature selector, we adopt a subsam-
pling based strategy. Consider a training setX containsn
samples,X = {xi, yi}n

i=1, and each samplexi is represented
by an d-dimensional vectorxi ∈ Rd and discrete class la-
bels yi. Then m subsamples of sizeβn(0 < β < 1) are
drawn randomly fromX, where the parametersm andβ can
be varied. Subsequently, feature selection is performed on
each of them subsamples to create the base feature selector.
In our case, the feature weighting algorithm is utilized to pro-
duce base feature selector and its output is a feature weight
vector for all features. Therefore, ensemble feature selection
on m subsamples generates the feature weighting results set

E = {w1, w2, · · · , wm}, wherewk(k = 1, 2, · · · ,m) rep-
resents the outcome of thek-th base feature selector trained
onk-th subsample. The results setE can be obtained by mini-
mizing the following loss function, which is based on the idea
that maximize the fit of the feature weighting vector, while
maximizing the diversity between vectors:

L(E) = Lemp(E) + γ.Ldiv(E), (1)

whereLemp(E) is the empirical loss ofE; Ldiv(E) is the di-
versity loss ofE and it can be recognized as regularization
term to embedding some prior knowledge.γ is the cost pa-
rameter balancing the importance of the two terms.

Since local-learning based feature weighting has shown to
be efficient for dysphonia measures selection [1], we employ
local learning-based logistic regression to implement the base
feature selectors. Thus, the first termLemp(E) in Eqn.(1)
is set to measure the empirical loss of logistic regression for
feature weighting:

Lemp(E) =
m∑

k=1

∑

xi∈kthsubsample

log(1+exp(
−wT

k

m
zi)), (2)

wherezi = |xi − Nmiss(xi)| − |xi − Nhit(xi)|, and|.| is an
element-wise absolute operator.xi is a sample ink-th sub-
sample. And two nearest neighbors of samplexi, one from
the same class is called as nearest hit (Nhit), and the other
from the different class is named as nearest miss (Nmiss).
wk = (w1

k, w2
k, · · · , wd

k) is a vector of lengthd andwt
k(t =

1, 2, · · · , d) represents the weight for featuret in k-th base
feature selector output.wT

k zi is the local margin forxi, which
belongs to hypothesis margin [10] and an intuitive interpre-
tation of this margin is to measure how much the features of
xi can be corrupted by noise (or how muchxi can “move”
in the feature space) before being misclassified. The natu-
ral idea behind the Eqn. (2) is to obtain a weighted feature
space parameterized by a feature weights vectorwk. So that
a margin-based error function in the induced feature space is
minimized. For the purposes of this paper, we use the Man-
hattan distance to define the margin and nearest neighbors,
while other standard distance definitions may also be used.
Note that the defined margin only requires the information
about the neighborhood ofxi, while no assumption is made
about the underlying data distribution. This means that we
can transform an arbitrary nonlinear problem into a set of lo-
cally linear ones by local learning [6].

As shown in Eqn.(1), the regularization termLdiv(E) is
used to characterize the diversity loss among the base feature
selectors. Though there is no agreement on what form of di-
versity should be defined, the diversity measures usually can
be defined in a pairwise form. Thus we consider a form of
diversity based on pairwise difference, and then the form of
diversity loss is defined as pairwise similarity. The more sim-
ilar all outputs are, the higher the diversity loss measure will
be. The overall diversity loss can be defined as the average
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over all pairwise similarity between the outputs of different
base feature selectors:

Ldiv(E) =
1

m(m− 1)

m−1∑

k=1

m∑

k′=k+1

Sim(wk, wk′), (3)

whereSim(wk, wk′) represents a similarity measure between
feature weighting vectorwk and wk′ . Notice that the fea-
ture weighting vector is direct related to the classification er-
ror based on the margin as described above, and each fea-
ture weighting vectorwk is linear without the bias term, thus
the direction of vector is the most important factor for the
classification performance. In the paper, the cosine similarity
measure is adopted with normalized feature weights to calcu-
late the similarity between weighting vectorwk andwk′ , then
Sim(wk, wk′) = wT

k wk′ . Note that the adding of a constant
||wk||22 + ||wk′ ||22 (its value is 2) does not change the optimal
solution [11]. In this case, the diversity loss can be replaced
by ||wk + wk′ ||22, i.e.

Ldiv(E) =
1

m(m− 1)

m−1∑

k=1

m∑

k′=k+1

||wk + wk′ ||22, (4)

and a relaxed convex optimization problem is obtain for en-
semble feature weighting loss in Eqn.(1). Furthermore, the
diversity loss is also al2-norm regularization term for logistic
regression, which leads to the stable feature weighting vec-
tors for its robustness to the rotational variation [12]. Then
the proposed diversity loss term has positive effect on feature
selection stability besides the classification performance.

In summary, ensemble feature selection aims to find the
target modelE∗ through minimizing the loss function in
Eqn.(1):

E∗ = argminwk
L(E), (5)

and the final ensemble feature weighting result is obtained by
linear combination of the outputs of base feature selectors.

we =
1
m

m∑

k=1

wk, (6)

wherewk ∈ E∗.
The target modelE∗ can be found by employing gradient

descent-based techniques. Accordingly, the gradients ofL(E)
in Eqn. (1) w.r.t the model parametersΘ = {wk|1 ≤ k ≤ m}
are determined as follows:

∂L
∂Θ

= [
∂L
∂w1

, · · · ,
∂L
∂wk

, · · · ,
∂L

∂wm
], (7)

where

∂L
∂wk

=
1

βn

∑

xi∈kthsubsample

∂ log(1 + exp(−wT
k

m zi))
∂wk

+
2γ

m(m− 1)

m∑

k′=1,k′ 6=k

∂Sim(wk, wk′)
∂wk

. (8)

and

∂ log(1 + exp(−wT
k

m zi))
∂wk

= − 1
m

exp(−wT
k

m zi)

1 + exp(−wT
k

m zi)
zi,

∂Sim(wk, wk′)
∂wk

= 2(wk′ + wk). (9)

Now, we are at the position to summarize the diversity
regularized ensemble feature weighting algorithm DREFW in
Algorithm 1 .

Algorithm 1 The Diversity Regularized Ensemble Feature
Weighting (DREFW) algorithm

Step 1. Input training data setX = {xi, yi}n
i=1, xi ∈ Rd

and regularization parameterγ in Eqn. (1).
Step 2. Initialize wk ∈ Rd wherek = 1, · · · ,m.
Step 3. Fork = 1, 2, · · · ,m-th subsampling

For everyxi in k-th subsample
Minimizing Eqn. (1) through Eqns. (8) and
(9) to obtainwk ∈ E∗ (k = 1, · · · ,m)

Step 4. Output the ensemble feature weighting result
using Eqn. (6).

To initialize the ensemble, each feature selector is learned
from a bootstrapped sample ofX. Specifically, the corre-
sponding feature weightingwk is obtained by minimizing the
objective functionwk = minwk

∑
xi∈kthsubsample log(1 +

exp(−wT
k zi)). Note that the ensemble can also be initialized

in other ways, such as instantiating eachwk with random
values, etc.

2.2. Stability Analysis

Same to the steps introduced in [7, 13, 14], the stability of en-
semble feature weighting algorithm is calculated as follows:
Consider the data setSwith Q instances andd features. Then
c sample subsets of sizeµQ(0 < µ < 1) are drawn randomly
from S, where the parametersc andµ also can be varied. The
sample subset is used asX described above. Subsequently,
ensemble feature weighting is performed on each of thec
sample subsets, and the similarity of outputs of ensemble fea-
ture weighting on thec sample subsets are calculated. The
more similar all outputs are, the higher the stability will be.
The overall stability can be defined as the average similarity
over all pairwise similarity between the different ensemble
feature weighting results. However, feature weighting is al-
most never directly used to compute the stability of feature
selection, and instead converted to a ranking result based on
the weights. For feature ranking, the Spearman rank correla-
tion coefficient [7, 15] can be used to calculate the similarity.
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3. EXPERIMENTS

3.1. Data

The experimental Parkinson speech rehabilitation data set is
from [1], which is derived from 14 PD subjects (eight males
and six females) with an age range of 51-69 years, and pro-
duced by sustained vowel /a/ phonations. The phonations
were assessed by experts perceptually whether phonations
could be “acceptable” or “unacceptable”. The dysphonia
measures used to characterize the phonation are defined and
summarized in [16]. Refer to [1, 16], we simply summarize
the dysphonia measures and cluster them into groups. The
first group of dysphonia measures builds on the physiologi-
cal observation that the vocal fold vibration pattern is nearly
periodic in healthy voices, whereas pathological voices tend
to depart from periodicity or are completely aperiodic. Two
of the most widely used dysphonia measures fall under this
category are known as jitter and shimmer. The recurrence pe-
riod density entropy (RPDE), the pitch period entropy (PPE)
and the glottal quotient (GQ) are also fallen into the first
group. The second general group of dysphonia measures is
the signal-to-noise ratio (SNR) type algorithms. The physio-
logical motivation for this group is that incomplete vocal fold
closure leads to the creation of aerodynamic vortices which
result in increased acoustic noise. Harmonic-to-noise ratio
(HNR), detrended fluctuation analysis (DFA), glottal to noise
excitation (GNE), vocal fold excitation ratio (VFER), and
empirical mode decomposition excitation ratio (EMD-ER)
are archetypal examples of this group. Lastly, Mel frequency
cepstral coefficients (MFCCs) target the placement of the ar-
ticulators (collectively referring to the mouth, teeth, tongue,
and lips), which is known to be affected in PD. Overall, 309
dysphonia measures are calculated to describe each phona-
tion, resulting in a design matrix of size156× 309.

3.2. Experimental Results for Stability

In this part of experiments, we will validate the stability of
proposed ensemble feature weighting algorithm DREFW and
compare with other state-of-the-art stable algorithms, such as
ensemble-LOGO (E-LOGO) used in [1], ensemble-Relief (E-
Relief) [7] and VR-Lmba [13, 14]. To estimate the stability of
ensemble feature weighting algorithm, the strategy explained
above was used withc = 5 sample subsets of size 0.9Q (i.e.
µ = 0.9 and each sample subset contains 90% of the data).
In our case, the size of sample subset is0.9 × 156 = 140.
This percentage was chosen because we want to assess sta-
bility with respect to relatively small changes in the data set.
Then, the proposed ensemble algorithm withβ = 0.9 was run
on each sample subset, and stability is calculated as described
in section 2.2. We show the stability of these algorithms w.r.t
different numbers of base feature selectors, i.e. the value of
m, in Fig.1(a). We see that the stability of all algorithms sat-
urates at aroundm=20. Since VR-Lmba is not an ensemble

method, its stability remains constant.
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Fig. 1. Experimental results of stability and accuracy

3.3. Experimental Results for Classification

Now we will turn to validate the classification performance
of our proposed DREFW for Parkinson speech rehabilita-
tion. In this part of experiments, the number of base selectors
for ensemble feature weighting is constant and set as 20
for all ensemble algorithms, i.e.,m=20. 10-cross valida-
tion is used and the linear SVM is adopted as classifier with
C=1 [17]. The accuracy rate of different numbers of selected
dysphonia measures for classifying the patients’ phonation
are shown in Fig. 1(b). The top ten dysphonia measures se-
lected by DREFW is{GNENSR,TKEO, V FERSNR,SEO,
V FERNSR,TKEO1, V FERNSR,TKEO,V FERNSR,SEO,
IMFNSR,TKEO, Log energy, 0thMFCC, 2ndMFCC,
5thMFCC}

From the experimental results above, we can observe that
our proposed ensemble algorithm-DREFW, can obtain higher
classification accuracy than other ones in most cases. The
stability value of our algorithm is approaching to 1 and is su-
perior or at least equivalent to other methods. Then the di-
versity regularization term in our proposed ensemble feature
weighting algorithm is effective to improve the classification
performance without sacrificing the stability.

4. CONCLUSION

To stably and effectively choose the dysphonia measures
for automatically Parkinson’s speech rehabilitation, a di-
versity regularized ensemble feature weighting algorithm-
DREFW is presented. Local learning-based base feature
selector is adopted and diversity between base selectors is
considered in the evaluation criterion. The DREFW is ap-
plied into the Parkinson’s speech rehabilitation to find the
stable information-rich dysphonia measures, and combined
with SVM to classify the sustained vowel phonation as “ac-
ceptable” or “unacceptable”. The experimental results have
shown its higher accuracy and at least similar stability to
other ones.
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