
ACOUSTIC EVENT DETECTION BASED ON NON-NEGATIVE MATRIX FACTORIZATION
WITH MIXTURES OF LOCAL DICTIONARIES AND ACTIVATION AGGREGATION

Tatsuya Komatsu, Yuzo Senda, and Reishi Kondo

Information and Media Processing Laboratories
NEC Corporation

1753 Shimonumabe, Nakahara-ku, Kawasaki 211-8666, Japan

ABSTRACT

This paper proposes a new non-negative matrix factorization (NMF)
based acoustic event detection (AED) method with mixtures of lo-
cal dictionaries (MLD) and activation aggregation. One of the key
problems of conventional NMF-based methods is instability of acti-
vations due to redundancy of a region spanned by the bases of dic-
tionaries. Sounds inside the redundant region are often decomposed
into undesired combinations of bases and activations that cause fail-
ure of detection. The proposed method employs MLD for allocating
sub-groups of basis dictionaries to acoustic elements to minimize
redundancy in the region and obtain controlled activations. In or-
der to make activations more stable, the proposed method also in-
troduces activation aggregation which combines basis-wise activa-
tions into acoustic-element-wise activations. Much more stable ac-
tivations by the proposed method lead to significant improvement
in F-measure by up to 60% compared to an ordinary convolutive-
NMF-based method. The proposed method also outperforms a latest
alternative which is not based on NMF.

Index Terms— Acoustic Event Detection, NMF, group sparsity,
convex cone, activation aggregation

1. INTRODUCTION

To make cities safer, acoustic event detection (AED) as part of a
monitoring system is expected to find hazardous sounds related to
crimes, accidents and incidents in public spaces. In the spaces, en-
vironmental sounds coexist with the target sounds. This results in
failure of detection. Non-negative matrix factorization (NMF) has
been studied as a blind source separation method for this kind of
situation[1, 2]. A number of AED methods based on NMF have
been proposed[3, 4, 5, 6]. However, there is still room for improve-
ment as indicated by a comparison[7]. One of the key problems
of NMF-based methods is instability of activations due to overlaps
and unnecessary coverages of a region spanned by a basis dictio-
nary. Unstable activations can adversely affect the performance of
the subsequent classifier which uses activations as feature vector.

An acoustic event consists of a series of physical phenomena,
e.g., a glass break event starts from an impact to the glass followed
by resonances of broken pieces. In this paper, an acoustic element
refers a short sound produced by a physical phenomenon. Conven-
tional NMF-based methods[7, 8] model the acoustic elements by a
basis dictionary to decompose acoustic events into a combination of
bases and corresponding weights/activations. The subsequent clas-
sifier uses the activations as a feature vector representing the content
rate of the corresponding acoustic element. However, those meth-
ods often fail to capture the acoustic elements and excite unstable

activations due to their redundancy of regions spanned by dictionar-
ies. From the perspective of geometrical NMF interpretations[9, 10],
the redundant region can be interpreted as overlaps or unnecessary
coverages of convex cones formed by dictionaries. To reduce such
redundancy and capture the acoustic elements correctly, Mixtures of
Local Dictionaries (MLD) [11] is a promising NMF method when
allocating a sub-group of basis dictionary to each acoustic element.
Each basis group forms a small convex cone controlled to be as small
as possible to prevent overlap between cones and unnecessary cover-
ages in a dictionary. Introducing sparseness among the cones helps
NMF decompose the mixture into spaces of the cones.

This paper proposes a new AED method based on convolutive
NMF with MLD. As the cones are linked to the acoustic elements,
AED needs to know assumedly only the activation for each cone
rather than for each basis. Based on this assumption, activation ag-
gregation is newly introduced to make activations more stable. Since
different events may have the same acoustic element, an event should
be classified according to the combination of its acoustic elements.
The proposed method is evaluated with a variety of environments
and noise levels to confirm its robustness.

2. PROBLEM IN CONVENTIONAL METHODS

J. F. Gemmeke et al. [8] employs a compositional model to make a
dictionary matrix W from event specific basis matrices W(i) where
i ∈ {1, ..., I} represents an event index. Each W(i) is extracted by
performing NMF to an event specific spectrogram V(i) individually.
In the classification phase, an unclassified spectrogram V(∗) is de-
composed by NMF with the dictionary W. The resulting activation
matrix consists of event specific activation matrix H(i) correspond-
ing to W(i) as follows:

V(∗) ∼
[
W(1), ...,W(I)

] H(1)

...
H(I)

 . (1)

C. V. Cotton et al. [7] applies NMF to the entire training data
spectrogram V made by concatenating event specific spectrograms
V(i). In this way of dictionary generation, the extracted basis ma-
trix W represents a universal basis matrix for describing any acous-
tic events, thus each basis does not refer to any particular event but
an acoustic element. Hence, NMF is performed to each event spe-
cific spectrogram V(i) using the universal dictionary W to obtain
an event specific H(i).

V(i) ∼WH(i). (2)
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Fig. 1. Dictionaries of conventional works.

H(i) represents a content ratio of acoustic elements in V(i). HMM
is employed to detect events from the resulting activation matrix of
an unclassified spectrogram.

These methods seem to tie activations and events successfully;
however, they overlook the nature of NMF. A combination of ba-
sis vectors forms a convex cone that can reconstruct any data points
inside the cone. Once data points are projected onto the simplex,
the cone can be discussed as a convex hull (see 6.2). Fig. 1 illus-
trates geometrical interpretations of decomposition in the conven-
tional methods. The triangle in the figure represents the simplex of
the orthant where data points exist. Basis vectors are on the sim-
plex by definition and data points are projected onto the simplex.
Gemmake’s dictionary shown in Fig. 1(a) has convex cones, each
of which spans widely to enclose corresponding event’s data points.
There are overlaps among the convex hulls since the events tend to
have the same acoustic elements. Data points in the overlaps may
excite unstable activations, which result in failure of classification.
In Fig. 1(b), Cotton’s dictionary is expressed as a single big convex
hull since it is a universal basis matrix. There could be a number
of combinations to represent a data point inside the cone. In other
words, data points produce unexpected patterns of content ratio. The
patterns cause false positive and false negative in HMM detection.

3. THE PROPOSED METHOD

A combination of convolutive NMF, MLD, activation aggregation
and support vector machine (SVM) is proposed here as an AED
method. The proposed method consists of two main parts, i.e. dictio-
nary generation and event classification. The dictionary generation
relys on MLD to eliminate overlaps among convex cones and unnec-
essary coverages in a dictionary. The event classification carrys out
three stages, NMF with the dictionary, activation aggregation and
SVM classification. Fig. 3 shows the entire block diagram of the
proposed method.

3.1. Dictionary Generation

The basis matrices for G small convex cones are concatenated to
form an MLD dictionary W = [W(1), ...,W(G)]. A basis matrix
W(g) ∈ RF×Kg

+ consists of Kg basis vectors where g ∈ {1, ..., G}
is an index to each acoustic element. To determine target acoustic el-
ements, a universal basis matrix W0 is first extracted from the entire
training data spectrogram V with an ordinary convolutive NMF. K-
means clustering is then applied to the basis vectors in the matrix to
select G centroids µ(g) as the targets. Convolutive NMF is applied
again to V with the centroids µ(g) and the following cost function
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Fig. 2. Block diagram of the proposed acoustic event detection.

using the generalized Kullback-Leibler (KL) divergence DKL(·|·).

D (V|Λ) = DKL(V|Λ)

+ η
∑
g

DKL(µ(g)|W(g)) + λ
∑
t

Ω(ht) (3)

where Λ = WH, H = [h1, ...,hT ] and ht = [h
(1)
t , ...,h

(G)
t ]>

and (·)> denotes the transpose of the matrix.
The second term leads to a small convex cone enclosed by W(g)

for the gth acoustic element characterized by the centroid µ(g). The
size of a cone is controlled by η. The third term represents group ac-
tivation sparsity at time t controlled by λ. In this article, we borrow
Ω(ht) =

∑
g log(ε+ ‖h

(g)
t ‖1), from a prior art[11, 12].

As MLD approach is applied to convolutive NMF, the update
rule is modified to:

W
(g)
θ ←W

(g)
θ �

{(
V

Λ

)
θ→
H
>

+ η
µ

(g)
θ

W
(g)
θ

}/{
1

(
θ→
H
>

+ η

)}
,

(4)

H← H�


Θ−1∑
θ=0

W>
θ

θ←(
V

Λ

)
/{

Θ−1∑
θ=0

W>
θ 1

}
, (5)

h
(g)
t ← h

(g)
t

1

1 + λ
/{

ε+ ||h(g)
t ||1

} (6)

where � and
/

represent the element wise multiplication and divi-
sion and Wθ indicates a basis matrix over a plurality of frames with

a frame length θ ∈ {0, ...,Θ−1}, and
θ→
(·) is a column shift operator

described in [13].
Fig. 3.1 explains the relationship among data points, basis vec-

tors and convex cones generated by this process. Each convex cone
spans minimally enough to enclose data points of an acoustic ele-
ment.
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Fig. 3. Dictionary of the proposed method.

3.2. Event Classification

A target spectrogram is decomposed into an activation matrix by
NMF with the MLD dictionary generated above.

V(i) ∼WH(i). (7)

H(i) is updated using Eq. (5) and group sparsity Eq. (6) which helps
H(i) to be sparse by turning off activations of the irrelevant acoustic
elements.

However, there is still instability in h
(g)
t , an activation of g

th group. Therefore, activation aggregation h̃
(g)
t = ||h(g)

t ||1 is
introduced here to combine the basis-wise activations into h̃t =
[h̃

(1)
t , ..., h̃

(g)
t ]>. As a convex cone spanned by W(g) is linked to g

th acoustic element, h̃(g)
t can be treated as a acoustic-element-wise

activations. This activation aggregation makes activations more sta-
ble as a feature vector and helps the subsequent classifier to learn
the relationship between activations and events.

In the training phase, an event specific aggregated activation
H̃(i) = [h̃(i),1, ..., h̃(i),T ] is extracted from the corresponding spec-
trogram V(i). Once H̃(i) are obtained, they are used as feature vec-
tors to train the SVM. In this article, a simple linear SVM is used.

4. EXPERIMENTS

Experiments were performed on synthetic data to evaluate AED per-
formance of the proposed method. For comparison, we also experi-
mented two conventional methods. One is the convolutive NMF dic-
tionary method[7] with sparseness constraint [14]. The difference
between the proposed method and convolutive NMF are MLD pro-
cedure and activation aggregation. The other conventional method is
a latest alternative which is non-NMF-based method proposed by X.
Lu et al.[15].

4.1. Latest alternative not based on NMF

To the best of our knowledge, Lu’s method is a good alternative
among latest methods not limited to NMF based. The method, in-
spired by a work in image processing, employs a bag of spectral
patch exemplars to capture the temporal-frequency structures of
acoustic events. The method whitens the patches and then finds
representative patches by applying k-means clustering. The feature
vector of a patch is extracted by lining up the similarity measure for
each representative patch. With this feature, an SVM classifier is

Table 1. Test environments.
Environment Background sound sources
station square speech, music,

station concource speech, announcement, footsteps,
train, chime

airport lobby speech, announcement, footsteps,
cart, suitcase

bus terminal bus buzzer, engine, footsteps,
announcement

suburb insects, river, car engine (truck)

built for AED. This method is not based on NMF, but similar ideas
can be found in it.

4.2. Experimental condition

Assuming an application to city monitoring, tasks are set to detec-
tion of three major events, scream, glass break, and gunshot, in five
environments. Sound data sets used are Series 6000 General Sound
Effects Library[16] and ATR environmental dataset [17]. Table 1
shows detail of the environments. Test data were synthesized by
mixing a clean event sound signal into an environmental sound sig-
nal with signal-to-noise ratio (SNR) controled at 10, 15, and 20 dB.
All the signals are 16 kHz sampling and applied FFT with 512 pt
frame and 256 pt shift. Acoustic event detection performance is
measured by frame-wise recall, precision and F-measure[18] of 5-
fold cross validation.

The dictionaries were learned with a size of group G = 30
which holds Kg = 5 bases (total: 150 bases) of frame size Θ = 5 for
the proposed method. For the convolutive NMF method, 150 bases,
which is equivalent to total size of the proposed method, and Θ = 5.
Lu’s method uses codebook size 128 and patch size 10. Other pa-
rameters of all the methods were set to optimal values derived by
preliminary experiments.

4.3. Experimental results and discussion

Fig. 4 shows the overall performance in five environments. The pro-
posed method outperformed both the conventional methods among
all SNRs. Especially at ‘scream’ in 10 dB, the proposed method
showed 60% improvement in F-measure compare to the convolutive
NMF.

Some remarkable differences to the proposed method tell flaws
of the conventional methods. The precision differences for scream
indicate that convolutive NMF detected a lot of false positives. This
seems because its big convex cone includes unnecessary regions
where no target exists but environmental sounds got into and excited
similar patterns of activations.

As expected, Lu’s method keeps the point as it worked well at
a low SNR of 10dB. However, it could not gain much improvement
in recall even at 20dB. Simplicity of the method, a good point of
this method, may result in limitation of capability. The results for
gunshot reveal the weak point of Lu’s method. Since its codebook
can hardly express impulse sounds due to its normalization process,
sounds not resembling any word in it may be detected as a gunshot
event.
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Fig. 4. The overall performance in five environments.

5. CONCLUSIONS

This paper has proposed a new AED method based on convolutive
NMF with MLD dictionary generation and activation aggregation.
The proposed method employed MLD for allocating small convex
cones to acoustic elements to minimize overlaps and coverages in
regions spanned by the dictionary. Since MLD’s cost function led to
group sparsity in basis as well as in activation, the function was also
applied to the event classification. To make activations more stable,
the proposed method also introduced activation aggregation which
combines basis-wise activations into acoustic-element-wise activa-
tions. Compared to ordinary convolutive NMF, much more stable
activations by the proposed method led to significant improvement
in F-measure by up to 60%. The proposed method also outperformed
a latest alternative which is not based on NMF.

6. APPENDIX

6.1. Non-Negative Matrix Factorization

To understand the nature of NMF, a basic algorithm and a geomet-
rical interpretation are revisited. In the AED context, NMF is an
algorithm to find a pair of matrices such that their product Λ ap-
proximates a source spectrogram V ∈ RF×T

+ ,

V ∼ Λ = WH, (8)

where W ∈ RF×K
+ is a basis matrix and H ∈ RK×T

+ is a activation
matrix[19]. W and H are estimated to minimize an cost function
D (V|Λ). The popular choice of cost function is the generalized KL
divergence,

DKL (x|y) = x log
x

y
− x+ y. (9)

To minimizeDKL (V|Λ), W and H are updated in a multiplicative
way by turn as follows:

W←W �
V
Λ
H>

1H>
, H← H�

W>V
Λ

W>1
. (10)

where 1 is a F × T matrix with all its elements are 1.
Practically, most of NMF-based AED methods use convolutive

NMF to obtain spectro-temporal information of acoustic events. In
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Fig. 5. Relationship between data points and basis vectors.

that case, a basis matrix over a plurality of frames is described as
Wθ with the frame index θ ∈ {0, ...,Θ−1} and V is approximated
as follows:

V ∼ Λ =

Θ−1∑
θ=0

Wθ

θ→
H , (11)

where
θ→
(·) is a column shift operator described in [13]. If Θ = 1,

convulsive NMF is equivalent to general NMF. In the other part of
this article, we omit subscript θ of Wθ for simplicity.

6.2. Geometrical Interpretation of NMF

A geometrical interpretation helps us to understand the relationship
among V, W and H[9, 10]. A row vector vt at a time frame index
t ∈ {1, ..., T} of V is described by a conical combination of wk

corresponding to a basis index k ∈ {1, ...,K} and hk,t which is an
activation of wk at the time frame index t,

vt = h1tw1 + h2tw2 + · · ·+ hKtwK . (12)

Here, if they are normalized, Eq. 12 represents a convex combi-
nation. Fig. 5 illustrates the relationship between data points and
basis vectors on the simplex. vt are projected onto the simplex by
normalization and wk constitute a convex hull that wraps most of
vt. Due to the non-negativity of W and H, the data points in the
area enclosed by W can be completely reconstructed by a convex
combination of W and H, while data points outside the area cannot.
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