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Abstract
Distributed deep neural networks are commonly employed for
building automatic speech recognition (ASR) systems. In this
work, we employ the robust submodular partitioning approach,
which aims to split the training data into small disjoint data
subsets and use each of these subsets to train a particular
deep neural network. Two efficient algorithms are used as
robust submodular functions [1], namely ‘Greedi-Max’ and
‘Minorization-Maximization’ [2], which are guaranteed to pro-
vide tight approximations to the submodular data partition prob-
lem. Experiments on TIMIT database show that each of the
distributed neural networks trained by the submodular data sub-
set obtains better results than that trained on any subset of data
partitioned in a random way.

In addition, multi-class adaboost is effectively used to fuse
the outputs of the deep neural networks and provides compet-
itive ASR results compared with the traditional ASR system.
Besides, the time incurred by acoustic modeling is significantly
reduced, which delivers us further benefits.
Index Terms: Robust Submodular Data Partitioning, Greedi-
Max, Minorization-Maximization, Speech Recognition, Deep
Neural Network

1. Introduction
The recent development of the automatic speech recognition
(ASR) allows training acoustic models based on deep neural
networks (DNNs) in a distributed way [3, 4]. In the stage of
transcribing speech signals, all outputs of the DNNs are some-
how combined to produce relatively better ASR results than tra-
ditional ASR systems [3].

However, there are several problems in the prior work [3]
which hinder the distributed ASR system from using widely in
practice: one is that each of the DNNs is trained by using all
the training data, which demands incredibly powerful compu-
tation resources for acoustic modeling; another problem is that
the prior attempt makes use of a so complicated model combi-
nation strategy that it is hard to be scalable to a large dataset.
Besides, it usually takes too much time in DNN training on
large datasets. Even though efficient GPUs are used, we have to
spend much time in waiting for the DNN training before testing
or modifying acoustic models.

Our work aims to partition a dataset into disjoint data sub-
sets and each subset of data is used for training a particular DNN
of the distributed ASR system. Generally, it is an NP-hard prob-
lem to find an optimal solution when searching for subsets of
data which can maintain the performance for all DNNs. Fortu-
nately, submodularity provides a greedily near-optimal approx-
imation to the NP-hard problem if the objective function of the
data partition problem satisfies one of the equivalent definitions
for submodular functions [5].

One commonly used definition of a submodular function is
based on the first order diminishing return [5]. Specifically, a
set function f is submodular if and only if for any two subsets
A,B and a ground set V , there are A,B ⊆ V and an element
k ∈ V , such that A ⊆ B and k /∈ B, and for which (1) is
satisfied:

f(A ∪ {k})− f(A) ≥ f(B ∪ {k})− f(B). (1)

The most advantage of the submodular function is that it
can deliver a close approximation to discrete optimization prob-
lems with a constant guarantee. For example, the feasible solu-
tion found by the efficient greedy algorithm for the submodular
function maximization with a cardinality constraint is at least
1− e−1 close to the optimal answer, while there is at most 50%
gap between the approximation and the best optimal solution
when the knapsack constraint is concerned [6]. As for the prior
work about submodular data selection for ASR tasks [7, 8],
the related problem is formulated as the following submodular
function maximization:

max
S⊆2V

f(S), s.t., |S| ≤ l, (2)

where the symbols 2V , S, and l denote a set of all possible
subsets of a ground set V , a subset from elements of 2V , and
a constant for the budget constraint respectively. Besides, the
submodular function f at the empty set should be 0.

The function f(S) is simply defined as a combination of a
concave function g and a modular function mu(v) associated
with a clustered triphone feature u, as shown in (3):

f(S) =
∑
v∈S

g(
∑
u

mu(v)), (3)

where g is usually defined as square root and mu(v) represents
the number of frames of the feature u in the utterance v.

An approximate solution to the problem shown in (2) is ef-
ficiently found by using an iteratively greedy algorithm. The
work in [7] suggests that a small subset with 10% of the data
selected by the feature-based submodular function is capable of
maintaining the ASR performance.

Our work, however, tries to partition the data into several
disjoint subsets for training distributed acoustic models based
on deep neural networks. To do so, the robust submodular data
partition problem with the most recently proposed approxima-
tion algorithms is used [2]. In addition, we make use of the
phonetic knowledge when doing the conversion from triphone
states to biphone states to formulate the heterogeneous submod-
ular functions in the robust submodular data partition problem.

Other benefit for the ASR system comes from the DNN out-
put combination. To combine the outputs of all acoustic models,

2254978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



it is necessary to assign the weights to the outputs of the DNNs
in a simply but self-adaptive way. In this work, a multi-class
adaboost approach [9] is used, which boosts several weak clas-
sifiers into a stronger one.

In fact, the most benefit of the distributed ASR system is not
only maintaining or achieving better ASR results, but the time
incurred by acoustic modeling based on the DNN is expected
to be significantly reduced such that we can test and modify the
acoustic models more efficiently.

The rest of the paper is organized as follows: Section 2
presents the robust submodular partitioning as well as related
fast approximation algorithms and how to formulate heteroge-
neous submodular functions. Section 3 introduces the multi-
class adaboost algorithm. Experiments are reported in Section 4
and the paper is concluded in Section 5.

2. Robust Submodular Partitioning
2.1. Problem formulation

The problem of partitioning the data into subsets is formulated
as a robust submodular partitioning problem [1] as shown in (4):

max
π∈Π

min
i
fi(A

π
i ) (4)

s.t., ∪iAπi = V,Aπi ∩Aπj = Φ,∀i, j,

where {f}i refers to heterogeneous submodular functions, the
set π = (Aπ1 , A

π
2 , ..., A

π
m) is a partition of a finite set V , and

Π denotes the set of all partitions of V into m blocks. Such a
robust submodular partitioning problem is also called max-min
submodular fair allocation (SFA). The following will introduce
two SFA approximation algorithms which are not only efficient
but can also be scalable to a large dataset.

2.2. Greedi-Max algorithm

The first approximation algorithm for the SFA is based on
Greedi-Max, which is shown in Algorithm 1. Greedi-Max aims
to add one item with the maximum marginal gain to the block
whose current solution is minimum. Initializing {Ai}mi=1 with
the empty set, sizes of blocks are incrementally increased by
greedily improving the overall objective min

i=1,...,m
fi(Ai) until

{Ai}mi=1 forms a partition π̂ = {Aπ̂1 , Aπ̂2 , ..., Aπ̂m}.

Algorithm 1: Greedi-Max
1: Input: {fi}mi=1,m, V .
2: Let A1 = ... = Am = Φ; R = V .
3: while R 6= Φ do:
4: j∗ ∈ argmin

j
fj(Aj)

5: a∗ ∈ max
a∈R

fj(a|Aj∗)

6: Aj∗ ← Aj∗ ∪ {a∗}; R← R\{a∗}
7: end while
8: Output: π̂.

Each subset partitioned by the Greedi-Max is guaranteed at
least 1

m
close to the optimal solution [10], as shown in (5).

min
i=1,..,m

fi(A
π̂
i ) ≥ 1

m
max
π∈Π

min
i=1,...,m

fi(A
π
i ),∀i (5)

2.3. Minorization-Maximization algorithm

The second approximation algorithm is the Minorization-
Maximization (MMAX). As shown in Algorithm 2, the MMAX
aims to iteratively maximize tight lower bounds of submodular
functions {fi}mi=1.

Algorithm 2: Minorization-Maximization (MMAX)
1: Input: {fi}mi=1,m, V , partition π0.
2: Let t = 0.
3: repeat
4: for i = 1, ...,m do
5: Pick a subgradient hi at Aπ

t

i for fi.
6: end for
7: πt+1 ∈ argmax

π∈Π
min
i
hi(A

πt

i )

8: t = t + 1
9: until πt = πt−1

10: Output: πt.

Since submodular functions are regarded as discrete anal-
ogous to continuous convex functions, there are many connec-
tions of properties between submodular functions and convex-
ity. Submodular subdifferential is such a case and is defined as
(6):

∂f (X) = {x ∈ Rn : f(Y )−x(Y ) ≥ f(X)−x(X), ∀Y ⊆ V },
(6)

where x(Y ) =
∑
j∈Y x(j) is a modular function.

A subgradient at X is also denoted by hX ∈ ∂f (X). The
extreme points of ∂f (Y ) can be computed via a greedy al-
gorithm: Let σ be a permutation of V that assigns the ele-
ments in Y to the first |Y | positions (σ(i) ∈ Y if and only
if i ≤ |Y |). Each permutation defines a chain with elements
Sσ0 = Φ, Sσi = {σ(1), σ(2), ..., σ(i)}, and Sσ|Y | = Y . An
extreme point hσY of ∂f (Y ) has each entry as (7):

hσY (σ(i)) = f(Sσi )− f(Sσi−1). (7)

(7) implies that hσY forms a lower bound of f , tight at Y ,
i.e., hσY (X) =

∑
j∈X h

σ
Y (σ(j)) ≤ f(X), ∀X ⊆ V and

hσY (Y ) = f(Y ). In fact, the idea of MMAX is to consider
a modular lower bound tight at the set corresponding to each
block of a partition. In theory [2], the algorithm of MMAX
achieves a worst-case guarantee of

O(min
i

1 + (|Aπ̂i | − 1)(1− kfi(A
π̂
i ))

|Aπ̂i |
√
mlog3m

),

where π̂ = (Aπ̂1 , ..., A
π̂
m) is the partition obtained by the algo-

rithm, and

kfi(A
π̂
i ) = 1−min

v∈V

fi(v|Aπ̂i \{v})
fi(v)

∈ [0, 1].

2.4. Composing heterogeneous submodular functions

The previous work [7] composes a submodular function based
on features of clustered triphone states, whereas our work
takes biphone states as features for constructing heteroge-
neous submodular functions. The phonetic knowledge sug-
gests that a triphone state can be converted into 8 broad
classes of biphone states. For instance, as shown in Table
1, a triphone state sh-iy+n[2] corresponds to 8 broad classes

2255



of biphone states (palatal-iy[2], fricative-iy[2], iy[2]+nasal,
unvoiced-iy[2], continuent-iy[2], iy[2]+coronal, iy[2]+voiced,
and iy[2]+alveolar).

Accordingly, if each submodular function fi is associated
with a class of biphone states, there are totally 8 heterogeneous
submodular functions in ASR tasks.

Place of articulation
1. Front Vowel: iy ih eh ae aw ey y
2. Central Vowel: ah er hh
3. Back Vowel: aa ao uh uw ay ow oy
4. Coronal: d l n s t z r th dh
5. Palatal: sh zh jh ch
6. Labial: b f m p v w
7. Velar: g k ng
8. Silence: sil

Production manner
1. High Vowel: ih iy uh uw
2. Mid Vowel: ah eh ey ow er
3. Low Vowel: aa ae aw ay oy ao
4. Fricative: jh ch s sh z f zh th v dh hh
5. Nasal: m n ng
6. Stop Consonant: b p t d k g
7. Approximant: w y l r
8. Silence: sil

Voicedness
1. Voiced: iy ih eh ey ae aa aw ay ah ao oy ow uh

uw er b d dh g jh l m n ng r v w y z zh
2. Unvoiced: p f th t s sh ch k hh
3. Silence: sil

Miscellaneous
1. Short Vowel: eh ih uh ae ah y oy
2. Long Vowel: iy uw aa
3. Diphthong: ey aw ow ao
4. ay: ay
5. Retroflex: er r
6. Affricate: ch jh
7. Alveolar: s z t d n l
8. Continuent: sh th dh hh m f ng v w zh
9. Non Continuent: p b g k
10: Silence: sil

Table 1: Phonetic Knowledge from Triphones to Biphones.

3. Combining Outputs of Acoustic Models
The data subsets partitioned by the heterogeneous submodular
functions {fi}8i=1 are used to separately train acoustic models
based on DNNs, which make it possible to train 8 DNNs for
acoustic modeling in parallel. However, when transcribing a
speech signal, it is necessary to fuse the outputs of all DNNs
and provide only one decoding result. As illustrated in Figure 1,
the key work of the model combination is to put weights to the
different outputs of the DNNs. Note that a sequence of clustered
triphone states is used for training all DNNs.

Our work attempts to weight the outputs of all DNNs in
a self-adaptive way based on the multi-class adaboost through
which an optimal scheme of weight assignment can be found.
The multi-class adaboost directly deals with multi-class classi-
fication tasks instead of simplifying the problem into multiple
two-class classification ones. The multi-class adaboost algo-

Figure 1: The Distributed ASR System.

rithm is shown in Algorithm 3, where M refers to the number
of DNNs, ci represents the i-th correct clustered triphone state,
and K denotes how many DNN targets are used. I(·) is an
indicator function which returns 1 if the condition between the
brackets is satisfied, otherwise returns 0. Adaboost tries to com-
bine several weak classifiers and enables the error rates obtained
by the combined system to become 0 in the training dataset.

When transcribing a speech signal, all clustered triphone
states of DNNs should be reserved for each frame and then com-
bined into one group of clustered triphone states by using the
step 4 in the multi-class adaboost algorithm.

Algorithm 3: Multi-class Adaboost
1. Set the observation X = (x1, x2, ..., xK) and the test data y.
2. Initialize the observation weights wi = 1/K, i = 1, 2, ...,K.
3. For m = 1 to M :

(a) Fit a classifier T (m)(·) to the observation X using weights wi.

(b) Compute err(m) =
K∑
i=1

wi · I(ci 6= T (m)(xi))/
K∑
i=1

wi

(c) Compute α(m) = log 1−err(m)

err(m) + log(K − 1)

(d) Set wi ← wi · exp(α(m) · I(ci 6= T (m)(xi))), for i = 1, ...,K

4. Output C(y) = argmax
k

M∑
m=1

α(m) · I(T (m)(y) = k).

4. Experiments
4.1. Experimental setup

Our experiments are conducted on the TIMIT database. The
training data consist of 3696 utterances in total. The develop-
ment and test data are composed of 200 and 1200 utterances
respectively. Data preprocessing includes extracting 39 dimen-
sional Mel Frequency Cepstrum Coefficient (MFCC) features
that correspond to 25.6ms speech signals. In addition, mean
and variance speaker normalizations are also applied.

The acoustic models are initialized as clustered tri-
phones modeled by 3-state left-to-right hidden Markov mod-
els (HMMs). The state emission of the HMM is modeled by
the Gaussian mixture model (GMM). The DNN targets consist
of approximately 3664 clustered triphone states. All sequential
labels corresponding to the training data are generated by align-
ment based on the HMM-GMM. A 3-gram language model is
used for the decoding.

The 8 subsets of data partitioned by the submodular func-
tions are used for training 8 DNNs in parallel. The units at
the input layer of each DNN correspond to a long-context fea-
ture vector that is generated by concatenating 11 consecutive
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frames of the primary MFCC feature followed by a discrete co-
sine transformation (DCT). Thus, the dimension of the initial
long-context feature is 429 and the number is reduced to 361
after the DCT [11]. There are 4 hidden layers in total with
a setup of 1024-1024-1024-1024 for each DNN. The param-
eters of the hidden layers are initialized via Restricted Boltz-
mann Machine pre-training [12], and then fine-tuned by the
Multi-layer Perceptron Back-Propagation algorithm. Besides,
the feature-based maximum likelihood linear regression is ap-
plied to DNN speaker adaptation [13].

The multi-class adaboost starts to train after all DNNs have
been trained. All frames of the 3696 training utterances are used
for multi-class adaboost weight adjusting. The development set
is used to validate the system performance in the training pro-
cess.

4.2. Experimental results and analysis

First, we compare the performance of the ASR system trained
on the data partitioned by the two SFA approximation algo-
rithms and by a random way. Note that data in this work refer
to the utterances and that although SFA approximation algo-
rithms do not allow sizes of all subsets to be equal, each size
of random selected utterances is deliberately set to 1/8 of the
total data size. In addition, the utterances selected in the ran-
dom subset do not appear in the other subsets. Table 2 shows
the word error rates (WERs) on 8 data subsets partitioned by
the random way, and the Greedi-Max and MMAX algorithms
respectively. Note that the results of the random partition allow
±0.2 absolute errors and that the WER of the traditional ASR
baseline reaches as low as 18.5% [14].

Subset ID Random Greedi-Max MMAX
1 22.9 21.6 20.7
2 22.8 21.2 20.1
3 22.5 20.6 20.2
4 22.9 20.5 20.6
5 22.6 21.1 20.4
6 23.0 20.4 20.8
7 22.7 20.5 20.1
8 22.8 21.2 20.3

Table 2: WERs(%) on subsets partitioned by various ways.

As shown in Table 2, WERs corresponding to the robust
submodular partition are significantly lower than those based
on the random way, while the MMAX basically outperforms
the Greedi-Max approximation algorithm. The best results ob-
tained by the MMAX are attributed to the fact that more tight
lower bounds of submodular functions can be iteratively found
by the MMAX. By contrast, the lower bound of submodular
functions is fixed in the Greedi-Max beforehand.

Table 3 compares the combination of the outputs of the
DNNs with and without the use of multi-class adaboost. With-
out the use of multi-class adaboost means averagely putting
weights to the outputs of all DNNs. As suggested in Table 3, the
multi-class adaboost greatly lowers the WERs, whereas averag-
ingly putting weights cannot achieve any improvement. Note
that MMAX achieves even lower rate than the baseline system,
while the WER obtained by the Greedi-Max is relatively close
to the baseline result.

Furthermore, the total training time of the distributed ASR

Category Multi-class Adaboost Averaging
Random 20.4 22.7

Greedi-Max 18.9 20.9
MMAX 18.3 20.1

Table 3: WERs(%) with and without multi-class adaboost.

system, which includes parallel acoustic modeling on the same
8 GPUs and training the multi-class adaboost, is approximately
4 times faster than the traditional ASR baseline system trained
in a single GPU.

5. Conclusions
The work tries to partition the data into disjoint subsets for train-
ing distributed acoustic models based on DNNs. We formulate
the problem as a robust submodular data partition and tries to
find approximated solutions by ‘Greedi-Max’ and ‘MMAX’.
The experiments on the TIMIT database show that both SFA
approximation algorithms are capable of partitioning the data
more efficiently than a random way. In addition, the multi-class
adaboost combines the outputs of all DNNs and brings in further
gains to the distributed ASR system. Besides, the final results
of the distributed ASR system are not only comparable to those
of the traditional one, but the time incurred in DNN training
is significantly reduced if all DNNs can be trained in parallel.
Future work will extend the study to larger datasets for ASR.
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