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ABSTRACT

In this paper, we propose a basis compensation algorithm for non-
negative matrix factorization (NMF) models as applied to supervised
single-channel speech enhancement. In the proposed framework, we
use extra free basis vectors for both the clean speech and noise during
the enhancement stage in order to capture the features which are not
included in the training data. Specifically, the free basis vectors of
the clean speech are obtained by exploiting a priori knowledge based
on a Gamma distribution. The free bases of the noise are estimated
using a regularization approach, which enforces them to be orthogo-
nal to the clean speech and noise basis vectors estimated during the
training stage. Experimental results show that the proposed NMF
algorithm with basis compensation provides better performance in
speech enhancement than the benchmark algorithms.

Index Terms— Single-channel speech enhancement, non-
negative matrix factorization, supervised algorithm, basis adaptation

1. INTRODUCTION

Numerous algorithms for single-channel speech enhancement have
been proposed in the past such as: minimum mean-square error
(MMSE) estimation [1], spectral subtraction [2], and subspace de-
composition [3]. These algorithms, however, use a minimal amount
of a priori information about the speech and noise and hence,
tend to provide limited performance under adverse noise conditions.
Recently, the non-negative matrix factorization (NMF) approach,
which decomposes a given matrix into basis and activation matri-
ces with non-negative element constraints [4, 5], has been success-
fully applied to diverse problems such as image representation [6],
source separation [7] and speech enhancement [8]. In speech and
audio applications, the magnitude or power spectrum is interpreted
as a linear combination of the basis vectors which can be obtained a
priori using training data.

In a supervised NMF-based framework, the basis vectors are ob-
tained for each source independently during the training stage, and
used subsequently in the separation or enhancement stage. One main
problem of such supervised algorithms is the existence of a mis-
match between the characteristics of the training and test data which
in turn leads to a decreased quality of the estimated sources. A pos-
sible remedy to this problem is to add explicit regularization terms to
the NMF cost function that incorporate some prior knowledge, such
as temporal continuity [9] or statistical priors of the magnitude spec-
tra [10]. In these algorithms, however, the basis vectors are fixed
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during the enhancement stage, which limits the performance when
there is a large mismatch between the training and test data.

One alternative approach to handle such problem is to use a basis
adaptation scheme during the enhancement stage. In [11], the basis
vectors are adapted based on prior distributions modeled by Gamma
mixtures. In [12], a basis adaptation scheme for sparse convolutive
NMF model has been proposed. The authors in [13] employ extra
validation data for speaker adaptation in a speech-music separation
task. Recently in [14], the basis vectors are adapted by using a com-
bination of the original and pre-processed noisy speech samples, the
latter being obtained via a classical MMSE-based speech enhance-
ment algorithm. The estimated basis vectors are further corrected
based on the speech presence probability (SPP). In these algorithms,
however, the basis vectors are adapted from the mixtures of multi-
ple sources, e.g., noisy speech, such that the resulting basis vectors
may still exhibit features of different sources. Consequently, the en-
hanced speech may contain some residual noise components. Hence,
adapting the complete set of basis vectors may limit the enhanced
speech quality.

In this paper, we propose a new basis adaptation algorithm for
NMF-based speech enhancement, motivated by semi-supervised ap-
plications where the training data are available for only a few sources
[15]. In the proposed framework, we use extra free basis vectors
for both the clean speech and noise during the enhancement stage
in order to capture the features which are not included in the train-
ing data. Specifically, the free basis vectors of the clean speech are
obtained by exploiting a priori information about the basis vectors
based on the Gamma distribution [16]. The free basis vectors of the
noise are estimated using a regularization approach, which enforces
them to be orthogonal to the clean speech and noise basis vectors es-
timated during the training stage. [15, 17]. These free basis vectors
are estimated from the noisy speech along with the pre-processed
signals similar to [14]. Since we use extra free basis vectors and
do not change the trained ones, we refer to the proposed method
as basis compensation rather than adaptation. Experimental results
of perceptual evaluation of speech quality (PESQ) [23], source-to-
distortion ratio (SDR) [24] and segmental SNR (SSNR) show that
the proposed algorithm provides better enhancement performance
than the benchmark algorithms.

In this paper, we use the subscripts or superscripts Y , S and N
for indicating the noisy speech, clean speech and noise, respectively.
We use the bold upper case to denote the matrix, e.g., H, and bold
lower case for the column vector, e.g., y. The symbol R+ denotes
the set of non-negative real numbers and 1KL is a K ×L matrix with
all entries equal to one.
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2. NMF-BASED SPEECH ENHANCEMENT

For a given matrix V = [vkl] ∈ RK×L
+ , NMF finds a local optimal

decomposition of V = WH, where W = [wkm] ∈ RK×M
+ is a basis

matrix, H = [hml] ∈ RM×L
+ is an activation matrix and M is the

number of basis vectors. The factorization is obtained by minimizing
a cost function, such as the Kullback-Leibler (KL) divergence which
is defined as,

DKL(V,WH)=
∑
k

∑
l

(
vkl ln

vkl
[WH]kl

− vkl + [WH]kl
)

(1)

where [·]kl denotes the (k, l)-th entry of its matrix argument. The
solution can be obtained via multiplicative update rules [4]:

W←W⊗ (V/(WH))HT

1KLHT
, H← H⊗ WT (V/(WH))

WT 1KL
(2)

where the operation⊗ denotes element-wise multiplication, / and the
quotient line are element-wise division and the superscript T is the
matrix transpose. After each iteration, the columns of W are normal-
ized using the l1-norm and the rows of H are scaled, accordingly, in
order to avoid the scale indeterminacies [5]. As for the initializations
of W and H, positive random numbers are often used.

In NMF-based single-channel speech enhancement, we assume
in practice that the magnitude spectrum of the noisy speech, ob-
tained via short-time Fourier transform (STFT), can be approxi-
mated by the sum of the clean speech and noise magnitude spectra,
i.e., |yl| ≈ |sl| + |nl|, where yl = [Ykl], sl = [Skl] and nl = [Nkl]
respectively denote the noisy speech, clean speech and noise spec-
tra, and k ∈ {1, . . . ,K} and l ∈ {1, . . . , L} are the frequency
bin and time frame indices [7, 8, 14]. In a supervised framework,
WS = [wSkm] ∈ RK×MS

+ and WN = [wNkm] ∈ RK×MN
+ are

obtained during the training stage, by applying (2) to the training
data of the clean speech and noise magnitude spectra. In the en-
hancement stage, by fixing WY = [WS WN ], the activation vector
hYl = [(hSl )T (hNl )T ]T ∈ R(MS+MN )×1

+ is estimated at the l-th
time frame by applying the activation update to |yl|.

The clean speech can be estimated from the noisy speech spec-
trum using a gain function, as in Ŝkl = GklYkl. Among various
choices for Gkl, we use the well-known MMSE short-time spectral
amplitude (STSA) estimator [1],

Gkl=Γ(1.5)

√
ρkl

γkl
exp
(
−ρkl

2

)[
(1+ρkl)I0

(ρkl
2

)
+ρklI1

(ρkl
2

)]
(3)

where Γ(·) is the Gamma function, and I0(·) and I1(·) are the mod-
ified Bessel functions of zero and first order, respectively. The quan-
tity ρkl is defined as follows in terms of the a priori SNR, ξkl, and a
posteriori SNR, γkl:

ρkl =
ξkl

1 + ξkl
γkl, ξkl =

p̂Skl
p̂Nkl

, γkl =
|Ykl|2

p̂Nkl
(4)

where p̂Sk,l and p̂Nk,l respectively denote the estimated power spectral
densities (PSD) of the clean speech and noise. The latter are obtained
via temporal smoothing of the NMF-based periodograms as [14],

p̂Sk,l = τS p̂
S
k,l−1 + (1− τS)

(∑
m

wSkmh
S
ml

)2
(5)

p̂Nk,l = τN p̂
N
k,l−1 + (1− τN )

(∑
m

wNkmh
N
ml

)2
(6)

where τS and τN are the smoothing factors for the clean speech and
noise, respectively. The time-domain enhanced speech signal is ob-
tained via inverse STFT followed by the overlap-add method.

3. PROPOSED ALGORITHM

3.1. Training stage

During the training stage, we obtain basis matrices for the clean
speech and noise, WS and WN , by applying the update rules given
in (2) to the corresponding training data, separately. In addition,
we estimate an extra basis matrix for the clean speech, i.e., WSp =

[wSp
km] ∈ RK×MSF

+ such that MSF < MS , whose entries will be used
as hyper-parameters in the a priori distribution of the free basis ma-
trix of the clean speech, during the enhancement stage, as explained
in the next section.

3.2. Enhancement stage

In the proposed framework, we use the classical MMSE STSA esti-
mator [1] as a pre-processor, where the noise PSD is estimated based
on [18]. This pre-processing removes some of the background noise
and the NMF-based enhancement algorithm is applied subsequently
to further improve the enhancement performance [14, 19]. More-
over, we can exploit different features from the ones obtained via
NMF-based algorithms, which can be useful for the basis adaptation
[14]. The proposed enhancement stage consists of two parts, first
the free basis computation and, second, the actual enhancement, as
explained in the next section.

3.2.1. Free basis computation

For the l-th time frame, the free basis matrices of the clean speech
and noise, WSF

l = [wSF
km,l] ∈ RK×MSF

+ and WNF
l = [wNF

km,l] ∈
RK×MNF

+ , are obtained. The goal is to estimate WSF
l by exploiting

a priori knowledge, whereas WNF
l is obtained to capture the fea-

tures which are not included in the training data of the clean speech
or noise. Specifically, we consider the Gamma distribution for the
prior of WSF

l , which is shown to be a conjugate prior to the NMF
model with KL-divergence in a statistical framework [16]. The prior
distribution for each entry of WSF

l is given by,

p(wkm|αkm, β−1
km)=(wkm)αkm−1β

αkm
km e−wkmβkm/Γ(αkm) (7)

where we have omitted l and SF for notational convenience, αkm
and βkm are the hyper-parameters, which in practice can be selected
as αkm = 2 and βkm = (wSp

km)−1 [13]. For WNF
l , we use a regular-

ization approach, which enforces its column vectors to be orthogonal
to every column vector in [WS WN ] [15, 17]. These free basis ma-
trices are obtained by estimating 1) the instantaneous free basis ma-
trices for the clean speech and noise, WSI =[wSI

km] and WNI =[wNI
km],

followed by 2) some further corrections applied on these matrices.
These two steps are detailed below.

1) Instantaneous basis computation: The noisy speech, yl, con-
tains the complete information of the clean speech but also includes
some noise components. On the contrary, less noise components are
found in the pre-processed speech, which will be denoted as s̄l, but
some clean speech features are attenuated. Therefore, it is necessary
to take into account both yl and s̄l as the target values for the basis
update [14]. We construct the target matrix by concatenating the ob-
servations as VI = [ |̄sl|, |n̄l|, |yl| ] = [vkq] ∈ RK×3

+ where n̄l =
yl − s̄l. The instantaneous free basis matrix WI = [WSI WNI] =

[wIkm] and activation matrix HI = [hImq] ∈ R(MSF+MNF)×3
+ are esti-

mated from VI . The proposed cost function is shown as,

J=DKL(VI ,WIHI)−RP (WSI) + ηRC(WI) + λRA(HI) (8)
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where DKL(·) is the KL-divergence given by (1) and η, λ > 0 are
regularization coefficients. The regularization terms are given as:

RP (WSI) =
∑
k

∑
m

[
(αkm−1) ln(wSI

km)− βkmwSI
km

]
(9)

RC(WI) = ‖ [WS WN ]TWNI ‖1 (10)

RA(HI) = ‖ HI ‖1 (11)

where ‖ · ‖1 denotes the l1-norm. The term RP (WSI) is the loga-
rithm of the prior of WSI based on (7), where we assume that each en-
try wSI

km is drawn independently and discard irrelevant terms which
do not depend on wSI

km [16]. The regularization term RC(WI) ac-
counts for the orthogonality between [WS WN ] and WNI. The term
RA(HI) is added for sparse regularization, which implies that a re-
stricted basis vectors will represent the magnitude spectrum domi-
nantly and hence, known to be effective to train the so called parts-
based features [20]. The update rules are obtained as:

wIkm←


(akm − 1) +

∑
q c
I
kmq

βkm +
∑
q h

I
mq

, 1 ≤ m ≤MSF∑
q c
I
kmq∑

q h
I
mq + η(

∑
m′ wSkm′ +

∑
m′ wNkm′)

, else

(12)

hImq ←
∑
k c

I
kmq∑

k w
I
km + λ

(13)

where cIkmq is defined as:

cIkmq =
vIkqw

I
kmh

I
mq∑

m′ wIkm′hIm′q

. (14)

These update rules are derived by using the majorization-
minimization (MM) algorithm which is an iterative optimization
method exploiting the convexity of a function to find the maxima
or minima [5]. The MM method can be considered as a generalized
version of the expectation-maximization (EM) algorithm and hence,
guarantees convergence. As a brief interpretation, computing cIkmq
given in (14) corresponds to the expectation-step, whereas the update
rules given in (12) and (13) correspond to the maximization-step in
the EM algorithm.

At the end of each iteration, a normalization step is included
as introduced in Section 21. As for the initialization, we use the
free basis matrices obtained at the previous frame, i.e., WF

l−1 =

[WSF
l−1 WNF

l−1], for WI and generate positive random numbers for
HI .

2) Basis correction: The estimated WSI and WNI may respec-
tively contain some characteristics of the noise and clean speech and
therefore, it is necessary to further correct these instantaneous free
basis matrices. As a possible approach, the authors in [14] propose
to update the basis matrices via temporal smoothing using the SPP
as a smoothing factor, where the concept can be intuitively inter-
preted as follows. If the current time frame mostly contains noise,
the current clean speech basis matrix should be composed mostly of
the clean speech matrix obtained at previous time frame. We adopt
this idea in the proposed framework. Specifically, once WSI and WNI

are estimated, WSF
l and WNF

l are obtained as,

wSF
km,l = (1− ζkl)wSF

km,l−1 + ζklw
SI
km (15)

wNF
km,l = ζklw

NF
km,l−1 + (1− ζkl)wNI

km (16)

1In a strict sense, this type of normalization affects the cost function when
the regularization terms are added. However, we use such normalization as
usually performed in practical implementation.
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(Sec. 3.2.1)

ly

SW NW

SF
lW NF

lW

ls ˆ
ls

lζ

SpW

Fig. 1. Simplified block diagram of the proposed N-BC method.

where ζkl , P (H1|Ykl) is the posterior SPP computed during the
pre-processing stage based on [18] and H1 indicates the hypothesis
of the speech presence.

3.2.2. Actual enhancement

After estimating WSF
l and WNF

l , we apply the actual enhance-
ment to the pre-processed speech s̄l. By fixing WY

l =

[WS WSF
l WN WNF

l ] ∈ RK×MY
+ where MY = MS + MSF +

MN + MNF , the activation vector, hYl ∈ RMY ×1
+ , is estimated by

applying the activation update to |̄sl|with sparse regularization. That
is,

hYl ← hYl ⊗
(WY

l )T (|̄sl|/(WY
l hYl ))

(WY
l )T 1K1 + λ

. (17)

The enhanced speech spectrum at the l-th time frame is then esti-
mated using the gain function in (3) along with the parameters given
by (4) and the PSDs in (5) and (6). Note that, the PSDs of the clean
speech and noise are computed based on [WS WSF

l ] and [WN WNF
l ]

and their corresponding activation vectors, respectively. A simpli-
fied block diagram of the proposed method is illustrated in Figure
1. The proposed NMF algorithm with basis compensation will be
referred to as N-BC.

4. EXPERIMENTS
4.1. Methodology
We used clean speech from the TSP database [21] and noise from
the NOISEX database [22], where the sampling rate of all signals
was adjusted to 16 kHz. The magnitude spectrum of each signal
was obtained by using a Hanning window of 512 samples with 75%
overlap. For the clean speech, 20 speakers (10 males and 10 females)
were considered, whereas the Factory 1, Buccaneer 1 and Hfchannel
noises were selected. We considered a speaker-independent appli-
cation, i.e., one universal basis matrix covering all speakers. The
training data for the clean speech was constructed by selecting one
sentence from each speaker for a total of 20 sentences (50 seconds),
whereas 30 seconds signals were used for the noises. Each of the val-
idation and test speech signals consisted of 6 seconds (2 sentences)
signals. All these training, validation and test data were disjoint. The
noisy speech was generated from the test and validation signals, re-
spectively, by adding the noise to the clean speech to obtain input
SNR of 0, 5 and 10 dB.

For the parameters in the pre-processing, we used a smoothing
factor of 0.98 in the decision-directed method for the a priori SNR
estimation [1], whereas the the smoothing factor of 0.8 was used
for the noise PSD estimation [18]. We used MS = MN = 60
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Fig. 2. Average SDR values of the enhanced speech from Factory 1
noise at 0 dB input SNR (validation set).

and MSF = MNF = 20 basis vectors, and 20 iterations for each
free basis computation and actual enhancement. The smoothing
factors for the PSDs estimation in (5) and (6) were selected as
(τS , τN ) = (0.4, 0.9). The regularization coefficients, λ and η,
were determined by observing the performance using the validation
set. We considered various choices of λ ∈ {0.01, 0.05, 0.1} and
η ∈ {0, 0.01, 0.05, 0.1, 0.5, 1, 10, 50}. Figure 1 shows the average
results of the SDR metric for these λ and η values, where the noisy
speech was generated by adding the Factory 1 noise to the clean
speech at 0 dB input SNR. Based on this observation, as well as sim-
ilar patterns for the Buccaneer 1 and Hfchannel noises, we ultimately
chose λ = 0.1 and η = 0.1 for the experiments.

4.2. Results
We used PESQ [23], SDR [24] and SSNR as the objective measures,
where a higher value indicates a better results. As for the compari-
son, we implemented the standard NMF method (NMF) described in
Section 2, and two NMF algorithms with basis adaptation (N-BA),
where we will refer to each algorithm using its reference number.
For these benchmark algorithms, we used the same total number of
basis vectors as in the proposed algorithm, i.e., MS=MN =80. Al-
though the MMSE log-spectral amplitude estimator (LSA) [25] was
used as the pre-processor in [14], we implemented here the MMSE
STSA estimator which is used in the proposed N-BC method. Table
1 shows the average results of using the matched noise basis vec-
tors, where we employed the same type of the noise basis vectors as
the noise observed in the noisy speech. Table 2 shows the results of
using mismatched noise basis vectors, where we evaluated all algo-
rithms with the noise basis vectors obtained from the Babble noise
training data (which is also included in the NOISEX database). We
can see from Table 1 that the proposed method yielded the best re-
sults, in general. Furthermore, we can observe in Table 2 that the
proposed algorithm gave even much better improvements for the
mismatched case. Specifically, comparing the results between the
matched and mismatched cases, we see that performance of the pro-
posed N-BC method decreased much less than the performance of
the benchmark algorithms. Similar results were found for 10 dB in-
put SNR. It is thus verified that using the free basis vectors captures
the unobserved features in the training data better than updating the
complete set of basis vectors.

Informal listening tests were also conducted. In general, the pro-
posed method offered the best enhanced speech quality compared to
the others, in terms of the speech distortion and especially, the noise
reduction. Among the benchmark algorithms, [14] provided reason-

Table 1. Average results with matched noise basis vectors
Input Eval. Noisy NMF N-BA N-BA N-BCSNR [13] [14]

Fa
ct

or
y

1 0 dB
PESQ 1.34 1.61 1.71 1.90 1.92
SDR 0.06 3.91 4.30 6.93 6.83

SSNR -4.34 -1.52 -0.66 0.72 0.85

5 dB
PESQ 1.71 2.01 2.06 2.25 2.29
SDR 5.04 8.87 7.64 9.48 10.29

SSNR -1.14 1.69 1.53 2.85 3.38

B
uc

ca
ne

er
1 0 dB

PESQ 1.20 1.56 1.68 1.91 2.01
SDR 0.05 4.03 4.87 7.55 7.71

SSNR -4.54 -1.75 -0.57 0.89 1.14

5 dB
PESQ 1.54 1.94 1.99 2.27 2.36
SDR 5.04 8.91 8.06 10.04 10.71

SSNR -1.37 1.51 1.83 3.20 3.51

H
fc

ha
nn

el 0 dB
PESQ 1.17 1.51 1.69 1.91 2.01
SDR 0.06 4.93 6.72 8.72 8.83

SSNR -4.53 -1.24 0.63 2.22 2.36

5 dB
PESQ 1.44 1.85 2.00 2.28 2.37
SDR 5.04 9.69 9.57 11.13 11.79

SSNR -1.36 2.03 3.02 4.58 4.80

Table 2. Average results with mismatched noise basis vectors
Input Eval. Noisy NMF N-BA N-BA N-BCSNR [13] [14]

Fa
ct

or
y

1 0 dB
PESQ 1.34 1.48 1.37 1.78 1.87
SDR 0.06 2.83 2.04 5.94 6.46

SSNR -4.43 -1.80 -1.29 0.32 0.74

5 dB
PESQ 1.71 1.88 1.70 2.09 2.25
SDR 5.04 7.67 5.21 7.50 9.69

SSNR -1.14 0.97 0.45 2.02 2.95

B
uc

ca
ne

er
1 0 dB

PESQ 1.20 1.32 1.31 1.60 1.84
SDR 0.05 0.97 1.49 3.96 7.20

SSNR -4.54 -3.09 -1.71 -1.21 0.85

5 dB
PESQ 1.54 1.67 1.63 1.89 2.23
SDR 5.04 5.96 4.77 6.58 10.07

SSNR -1.37 -0.25 0.07 0.83 3.02

H
fc

ha
nn

el 0 dB
PESQ 1.17 1.25 1.27 1.46 1.86
SDR 0.06 -0.06 0.56 5.19 8.15

SSNR -4.53 -3.59 -2.32 0.33 1.94

5 dB
PESQ 1.44 1.52 1.49 1.87 2.24
SDR 5.04 5.20 4.43 7.21 10.97

SSNR -1.36 -0.68 -0.29 2.30 4.12

able results since it removed a significant noise components. How-
ever, the clean speech was also attenuated significantly. Moreover,
for the mismatched case, it failed to properly capture the features
corresponding to the ringing sound at high frequencies in the Bucca-
neer 1 noise. When only considering the proposed method, the en-
hanced speech was slightly attenuated compared to the clean speech.
This could be handled by further applying frequency weights or us-
ing a more effective basis matrix estimation algorithm during the
training stage, e.g., discriminative training criteria, which will be
considered in our future work.

5. CONCLUSION

A basis compensation algorithm of the NMF model for supervised
speech enhancement has been proposed. We used free basis vectors
for both the clean speech and noise during the enhancement stage in
order to capture the features which are not included in the training
data. The free basis vectors were estimated by exploiting a prior
knowledge and orthogonality regularization for the clean speech and
noise, respectively. Experiments showed that the proposed method
provided better results than the benchmark algorithms.
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