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ABSTRACT

We present an importance sampling based approach to the ac-
tive learning problem of selecting additional training data to
supplement a seed model. Our proposed ∆-AUC selection
optimizes AUC improvement in keyword search and is eval-
uated on the Spanish Fisher corpus. We show that over dif-
ferent training data sizes, ∆-AUC selection consistently out-
performs random sampling by 1.05% to 2.69% absolute AUC
and requires no more than 60% of the transcriptions needed
by random sampling to achieve the same AUC. On terms not
seen in the original seed model training, the proposed al-
gorithm achieves a 3.47% better AUC and 4.66% reduction
in word error rate. We also introduce a regression analysis
model that can refine our ∆-AUC strategy in the future.

Index Terms— Active learning, CTS, STT, KWS

1. INTRODUCTION

In this paper we consider improving the training efficiency of
a speech recognizer through the process of active learning, in
which algorithmically selected utterances are transcribed for
incorporation into a training set such that overall transcription
effort can be significantly reduced.

We consider the case where we have at most 40 hours
of transcribed conversational telephone speech (CTS) avail-
able. With this maximum amount of training available we
can expect word error rates in the vicinity of 40-60% depend-
ing on language and other variables. Transcripts at such word
error rates are often not in the range that is considered use-
fully readable. However, such systems when used for key-
word search (KWS) can return accurate enough hits. Thus
we focus on the AUC (area under the word precision recall
curves) metric, sometimes referred to as MAP (mean average
precision) which measures our ability to spot a set of words.
For this metric, each query term produces a ranked list of hits,
and the area under the precision-recall curve is averaged with
all other query terms to produce the AUC. Note that AUC
weights all terms equally, regardless of their frequency. Word
error rate (WER), on the other hand, weights frequently oc-
curring words most heavily, so large improvements to rare
terms will not have a large impact on improving overall WER.

We assume that we have an initial out-of-domain seed rec-
ognizer available that has been trained with a nominal amount
of transcribed speech. The problem we address is the selec-
tion of additional utterances to improve performance. Our ap-
proach is to automatically transcribe the untranscribed speech
with the seed recognizer and then rank each automatically
transcribed utterance with respect to its importance to the ∆-
AUC (the improvement in AUC after adding additional train-
ing). We follow the use of importance sampling in Monte
Carlo methods, in which one chooses a sampling function to
emphasize the selection of samples that are most important to
evaluate the expectation of a function [1]. This typically leads
to an accurate estimate with a low variance using many fewer
samples than would be used with random sampling. With this
motivation we have chosen a reward function that ranks the
importance of a sample, i.e., an utterance, according to its po-
tential of increasing the ∆-AUC rather than improving WER.
The highest ranked utterances are employed for providing a
desired amount of new training to be transcribed.

In Section 2 we describe our ∆-AUC selection criterion
and the details of our reward ranking function. Section 3 de-
scribes the experimental setup, and Section 4 gives our results
where we show that the selected reward function significantly
outperforms the use of word confidence as a selection crite-
rion and can reduce the required amount of utterances to be
transcribed by over 50% when compared to random sampling
of utterances. Section 5 provides a regression analysis of mea-
surable terms to determine their importance to increasing ∆-
AUC. This leads us to Section 6 in which we conclude and
discuss future work. While there have been other papers [2–6]
that employ active learning techniques, they have focused on
improving WER, although [7] reports KWS results in addi-
tion to WER. None, however, have considered importance
sampling of the ∆-AUC as a basis for active learning. Also,
unlike other approaches, our active learning strategy focuses
directly on our scoring function - the AUC. In effect, we are
estimating the gradient of the AUC function.

2. ∆-AUC SELECTION CRITERION

To improve the AUC of a given term, one of the most im-
portant factors, after adding it to the decoding dictionary, is
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to find instances of that word for training. As shown in Ta-
ble 1, a small number of training examples can give a large
boost in AUC. ∆-AUC is shown for a set of terms that had
no training in an out-of-domain seed model. An additional 10
hours of in-domain data1 was added to the model and we ex-
amined the ∆-AUC for terms where N in-domain examples
were added to training. The ∆-AUC as measured on a 168
hour test set shows that terms with no additional training ex-
amples (N = 0) gained modestly due to general acoustic and
language model improvement. Much larger gains were found
for adding a single training example of a term, but adding a
second instance gave diminishing improvements.

N #Terms Seed AUC Seed + 10 hr
AUC

∆-AUC

+0 4903 0.3912 0.4168 0.0256
+1 1027 0.4576 0.5178 0.0601
+2 249 0.4607 0.5367 0.0760

Table 1. ∆-AUC on rare terms when N additional instances
are added to training. All terms had 0 training instances in the
seed model. AUC is reported only on terms in each row.

We capture the effect of diminishing returns from addi-
tional training for word w with an importance weighting func-
tion: I(w) = 2−T (w), where T (w) is the number of instances
of w that have been transcribed, either in training or in previ-
ous iterations of active learning. This weighting function will
be used in the ∆-AUC criterion to capture the importance of
including an additional instance of word w.

Because AUC weights all words equally, improving terms
that are Out-Of-Training (OOT) or Rare-In-Training (RIT)
can have as much impact on AUC as improving more frequent
terms. For the experiments in this paper, we defined RIT as
terms that are seen in training, but occur less than 5 times. The
set of words that are in training and seen 5 or more times will
be called Frequent-In-Training (FIT). During active learning
selection, since we believe that finding more instances of the
FIT terms will have diminishing returns, we instead target the
rare terms (including both RIT and OOT terms) by assigning
a score to each utterance based upon the importance function
I(w) and the following factors:

• Pr(wi): the probability of word instance wi in the con-
sensus network output of the recognizer. This factor
helps the selection to avoid hallucinated instances of a
term, so that when an annotator transcribes the utter-
ance, the term is more likely to be present.

• C(Pr(wi)): how close the probability of word instance
wi is to an ideal confidence. This factor serves to

1See Section 3 for more details on corpora used in Table 1. 10 hours were
randomly selected from an active learning candidate set and remaining 168
hours were used for testing.

balance the Pr(wi) term, encouraging the selection of
terms that might be incorrect, possibly due to substitu-
tion with Out-Of-Vocabulary (OOV) terms. We define
this factor as exp(−(c−Pr(wi))

2

β ). The ideal confidence,
c, used for these experiments was 0.7, which causes
us to choose instances of rare words that are likely but
are still uncertain and thus valuable for training. β is a
scaling factor that we set to 1

15 .

• ρ(w): the prior probability of the word w in the can-
didate set of the utterances, estimated from the consen-
sus output. This is not the prior probability of the term
in the seed training data, but rather the expected prior
in the in-domain data. This factor causes selection of
terms that are more likely to occur in the in-domain
data and are therefore of more interest to users, even
though these terms were rare in the out-of-domain seed
training.

The score s(u) for each utterance u in Equation 1 is a lin-
ear combination of the factors, weighted by the importance
and summed over all of the instances of rare terms in the ut-
terance2.

s(u) =
∑

wi∈rare(u)

I(w)
D(u)

(α1 Pr(wi)+α2C(Pr(wi))+α3ρ(w))

(1)
The score for the utterance is normalized by the duration

of the utterance D(u), so that the score reflects the expected
benefit per second of audio transcribed. The utterances with
the highest scores are selected for transcription using a greedy
search. After each utterance is selected, T (w) is updated with
the new counts from the transcribed utterance so that an up-
dated I(w) can be computed3. Because I(w) is biased to-
wards unseen words, this causes the selection strategy to di-
versify its lexicon rather than focusing on a small number of
rare words.

3. EXPERIMENTAL SETUP

3.1. Corpora

We have evaluated our active learning selection algorithm on
Spanish CTS. The seed recognizer was trained on 20 hours
of transcribed speech selected from the Spanish CallHome,
CallFriend, and Ricardo corpora. The target domain for this
task was Fisher Spanish; accordingly, we reserved 6 hours of
the Fisher corpus for an evaluation set, and the remaining 178

2α1 = 0.3, α2 = 0.3, α3 = 0.4. A slightly higher weight is given to
α3 since the prior is a very low value for rare terms.

3The selection can also be run without immediate transcription feedback
by using the expected count of the words instances in the selected utterance,
Pr(wi), in place of the true counts to update T (w). Using only the expected
counts without ever adjusting for the actual counts reduces the effectiveness
of the active learning strategy.
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hours were used as the untranscribed candidate set for active
learning simulation.

3.2. LVCSR and KWS

Acoustic models for all systems were built using perceptual
linear predictive cepstral features for every 10ms frames, fol-
lowed by concatenation of 9 feature frames and then projec-
tion to 46 dimensional features. Vocal tract length normaliza-
tion, speaker adaptive training and speaker adaptation were all
applied in a similar manner as in the system described in [8].
GMM-HMM triphone and quinphone models were discrimi-
natively trained with the minimum phone error (MPE) crite-
rion.

KWS was performed by computing the posterior proba-
bility that any word ends at a particular time in the output
lattice for an utterance [9]. A ranked list for a given query
is returned, with hypothesized instances sorted by posterior
scores. Unless otherwise stated, AUC was measured on all
words in the evaluation set after discarding stopwords.

3.3. Active learning

Since the motivation behind the proposed ∆-AUC active
learning strategy is to find new instances of rare and unseen
terms, we began by expanding the initial decoding dictionary
of approximately 13,000 terms to approximately 250,000
terms. This was achieved by gathering term lists from the
Spanish Gigaword text corpus as well as scraping the Spanish
Voice of America news website for new terms [10]. The ex-
periments reported here do not use these external sources for
additional language model training, but we observed similar
results when doing so.

We compared our active learning algorithm to two base-
line approaches: random and confidence-based selection.
There are several variations on confidence based selection,
e.g. [2, 3]. For these experiments, we sorted the utterances
by the average posterior probability of the words in the one
best using the expanded dictionary, and then selected the
least confident among them. Utterances at the top of this
confidence-sorted list can be noisy and not helpful for train-
ing, so we found that we got better results by excluding 40%4

of the top of the list, thus removing the most noisy utterances.
For each active learning strategy, we selected 2.5 hours,

5 hours, 10 hours, and 20 hours from the candidate set. We
combined each of these new sets with the seed training and
retrained both the acoustic and language models. The decod-
ing dictionary for each model was composed of any terms in
the model’s training transcripts plus the additional terms de-
scribed above.

4Various percentages were tested, and we selected the percentage that
performed the best for KWS and WER.

4. RESULTS

Figure 1a compares the AUC for the three selection ap-
proaches when 2.5, 5, 10, and 20 hours of speech are selected.
The ∆-AUC selection strategy consistently outperformed ran-
dom sampling at all selection points by anywhere from 1.05%
to 2.69% absolute; in fact, it required as little as 40% and at
most 60% of the transcriptions needed by random sampling to
achieve the same AUC. In addition, the ∆-AUC method was
superior to confidence-based selection, with gains of 2.4%
absolute as more speech is required.
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(a) AUC, 3800 terms
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(b) OOT AUC, 953 terms
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(c) RIT AUC, 1017 terms
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(d) FIT AUC, 1553 terms

Fig. 1. AUC among active learning approaches for various
query sets. OOV terms (total of 277) not shown.

If we examine the AUC of various word subsets for ∆-
AUC, we find large improvements for the terms targeted
during active learning selection (Figures 1b and 1c) over both
baseline approaches. We see smaller gains for the FIT terms
(Figure 1d) compared to random selection and no change
compared to confidence-based selection. Of the 1.20% ab-
solute gain in overall AUC of the 10 hour ∆-AUC selection
over the 10 hour random sampling, the OOT terms were re-
sponsible for 46.19%, the RIT terms for 37.69%, and the FIT
terms for 12.94%, with the remaining gain due to OOV terms
that co-occurred or were confused with rare terms.

As users of audio KWS systems often search for new
words, the gains for OOT terms are particularly of interest. Of
the approximately 237,000 OOT terms targeted during active
learning selection, 953 occurred in the test set; we observed
that the ∆-AUC selection strategy resulted in large gains on
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Method Hours AUC OOT-WER (%)
Random 5 0.5638 79.79
Confidence 5 0.5854 79.03
∆-AUC 5 0.5985 75.13
Random 10 0.5901 78.11

Table 2. AUC and word error rate (%) among active learning
approaches on OOT terms in test set (953 terms). Selected
hours are added to the 20 hour seed model transcripts.

these OOT terms (Table 2). Comparing the confidence-based
method to the random baseline, we observed a 2.16% absolute
improvement in AUC and a 0.76% absolute improvement in
WER when selecting the same amount of speech. The ∆-
AUC selection outperformed the confidence-based method,
with a 3.47% absolute improvement in AUC and a 4.66% ab-
solute improvement in WER when compared to the random
baseline. ∆-AUC, using 50% less data, was almost 1% abso-
lute better in AUC than the random sampling approach in the
last row.

Since the ∆-AUC strategy focuses on improving AUC,
particularly on OOT and RIT terms, the WER measured on
the FIT terms was close to equal for all three selection strate-
gies, and the overall WER (dominated by the FIT terms) was
roughly equivalent between the three strategies as well. We
believe that for many KWS applications, users are more likely
to search for rare terms (such as the name of a person or loca-
tion), so improving OOT and RIT terms is likely more bene-
ficial than improving more common terms.

5. REGRESSION ANALYSIS

To support the choice of the three factors in the reward rank-
ing function described in Section 2, we performed a regres-
sion analysis to determine the importance of each individual
factor in relation to per-term ∆-AUC. The simple linear re-
gressions described in this section examined the per-term dif-
ferences in AUC when using two recognizers: 1) the seed
recognizer, and 2) the seed recognizer plus the 10 hours of
randomly selected speech from Section 3. The regressions
were trained on the entire active learning candidate set minus
the 10 hours used for the second model, for a total of approxi-
mately 168 hours. The per-term features used as independent
variables for the regression were extracted from the 10 hour
random set, as this set directly contributes to the ∆-AUC from
model 1 to model 2.

Because per-term ∆-AUCs can be very noisy and thus
hard to predict – for instance, many words occur only once
in a test set – we binned the data based on prior and fit a sim-
ple linear regression of the following form to the binned data
points

yi = β0 + β1xi + εi (2)

where yi is the dependent variable for a single data point (∆-
AUC in this case), xi is the independent variable, β0 and β1

are the regression coefficients, and εi is the error.

Independent Var. r2 r
ρ(w) 0.4747 0.6890
Pr(wi) 0.4484 0.6696
C(Pr(wi), c = 0.7) 0.4012 0.6334
C(Pr(wi), c = 0.3) 0.1115 0.3339

Table 3. Coefficient of determination (r2) and correlation co-
efficient (r) for simple linear regression with ∆-AUC as de-
pendent variable. β1 is statistically different than 0 at a 1%
significance level.

The first three rows of Table 3 show the coefficient of de-
termination, r2, as well as r, Pearson’s correlation coefficient,
for a simple linear regression of each of the three independent
variables used in the reward ranking function. The coefficient
of determination can be interpreted as the proportion of the
variance in the dependent variable, ∆-AUC, explained by the
regression [11]. For each of the factors used in the reward
ranking function, we see that close to half of the variance
in the data can be explained by the variable in question, so
they are good candidates for predicting ∆-AUC. On the other
hand, when we considered how close instances are to a confi-
dence of 0.3 rather than 0.7 in the last row of Table 3 (a factor
that seems intuitively to be less helpful), we found that only
11% of the variance in the data can be explained by this fac-
tor and the correlation coefficient is about half of the other
factors.

6. CONCLUSIONS

In this work, we have introduced the framework of impor-
tance sampling as a basis for active learning. We have demon-
strated that the ∆-AUC active learning methodology outper-
forms confidence-based selection and requires significantly
less transcription (40-60%) compared to random sampling of
utterances. On terms not seen in the original seed model train-
ing, ∆-AUC-based selection achieved a 3.47% better AUC
and 4.66% reduction in WER.

In the future, we can explore the use of the regression
analysis described in Section 5 as a basis for creating a refined
reward ranking function by learning weights for the ranking
function factors, effectively using the predicted ∆-AUC di-
rectly as the reward. With this regression analysis framework,
we can also attempt to incorporate additional predictive fea-
tures such as length and confusability.
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