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ABSTRACT

This paper proposes gain relaxation in signal enhancement designed
for speech recognition with an unaware local noise source. An atten-
tion is drawn to a new performance degradation problem in signal
enhancement combined with automatic speech recognition (ASR),
which is encountered in real products with an unaware noise source.
Gain relaxation, as a solution, selectively applies softer enhancement
of a target signal to eliminate potential degradation in speech recog-
nition caused by small undesirable distortion in the target signal
components. Evaluation of directional interference suppression with
signals recorded by a commercial PC (personal computer) demon-
strates that signal enhancement over the input is achieved without
sacrificing the performance for clean speech.

Index Terms— Signal enhancement, Speech recognition, Noise
suppressor, Beamformer, Phase difference

1. INTRODUCTION

Audio signals are captured by microphones placed in various dif-
ferent environment. A target signal which user tries to capture is
often contaminated by different types of noise and interference. Sta-
tionary noise at a relatively high signal-to-noise ratio (SNR) can be
well suppressed by a noise suppressor with a single microphone [1]-
[5]. A lower SNR and/or nonstationary noise require more complex
dual microphone solutions [6]-[19]. For point sources of noise or in-
terference, acoustic beamformers, also known as microphone arrays
(MAs), are more effective [20]–[24]. Phase-based time-frequency
(T-F) masking [26]-[29] is also a simple but effective technique for
point sources.

These signal enhancement techniques are effective for telecom-
munication or recording purposes as well as preprocessing for auto-
matic speech recognition (ASR). In case of telecommunication and
recording applications, the performance of the employed signal en-
hancement is mostly evaluated subjectively by users. For ASR, how-
ever, the performance is expressed by a successful recognition rate
or an error rate. Because such rates are objective measures, the re-
sult is more definite than a subjective measure. This fact sometimes
causes a problem in real products.

Products with signal enhancement capability are often evaluated
in ASR scenarios. Recognition/error rates are used as a measure
to decide if the product is sufficiently good or not. In general, if a
signal enhancement technique is applied to the raw signal collected
in a noisy environment, users expect better performance than the
raw signal. It is more true in a high SNR when nobody expects

even a small degradation. However, it is not always guaranteed. An
example is a personal computer (PC) equipped with a cooling fan.
The fan noise interferes the input signal although the resulting SNR
is relatively high. It is an unconscious noise for the user, because
the fan noise has such a small power and the distance between the
fan and the user ear is much longer than that between the fan and the
microphone. If there is any degradation in such a quiet environment,
it is easy to notice. A similar environment can be found in voice
recorders used with a projector with a cooling fan.

This kind of performance degradation has not been dealt with in
literatures. Those degradations in ASR performance is usually found
in some types of nonlinear signal enhancement techniques such as
noise suppressors (NSs) and phase-based T-F masking where only
the magnitude of the input signal is manipulated for signal enhance-
ment. Although these techniques are simple but effective, degrada-
tion of ASR performance in a high SNR environment often gives
fatal impression to users or those who evaluate the performance for
business purposes.

This paper proposes gain relaxation in signal enhancement de-
signed for speech recognition with an unaware local noise source.
The following section discusses the performance degradation prob-
lem in signal enhancement for ASR with an example. Section 3
presents gain relaxation as a solution to the aforementioned prob-
lem. In Section 4, evaluation results with phase-based T-F masking
in a commercial PC scenario are presented to show that word error
rates are reduced without sacrificing the performance for the clean
speech.

2. DEGRADATION IN SIGNAL ENHANCEMENT FOR ASR

Let us first look at Fig. 1 as an example of performance degradation
in signal enhancement when it is combined with ASR. NoSE and
dNS stand for no signal enhancement and directional NS, respec-
tively. A directional NS [28] applies a predetermined directional
gain in a frequency domain depending on the input signal DOA rep-
resented by the phase difference between signals from adjacent mi-
crophones.

Command error rates (CERs) do not change by application of
dNS. However, a word error rate (WER) for clean speech is in-
creased by 2% by dNS. This may be caused by inappropriate sup-
pression of small power components of the target signal. A small
error may be introduced in the phase difference by various imper-
fections such as the target DOA, microphone-gain mismatch, or their
combinations. A slightly changed phase difference may fall in out-
of-passband, leading to wrong and possibly fatal suppression of a
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Fig. 1. CER and WER with (dNS) and without (NoSE) a directional
NS (dNS) [29]. Word error rate for clean speech is degraded by
directional NS. Evaluation conditions are equal to those in Sec. 4.

target component. Influence is more serious for high SNRs which
otherwise needs little suppression. This degradation is investigated
using Fig. 2.

Figure 2 is an explanatory diagram for relationship of an error
rate with no enhancement (P), improvement by enhancement (Q),
degradation by distortion (R), and an error rate with enhancement.
The error rate with no enhancement increases as the SNR degrades.
A high SNR provides a small error and a low SNR results in a large
error rate. The SNR vs. error rate may not be proportional to the
SNR. It has different characteristics for different ASR engines. Let
us assume the error rate with no enhancement can be represented
by a straight line as a gray straight line in Fig. 2. When a signal
enhancement technique is employed, improvement in the ASR error
rate looks like a dashed line Q in Fig. 2. It is because no or negligible
error-rate reduction is obtained in a high SNR environment, while
the improvement is saturated as the SNR is decreased. Therefore, the
dashed line Q does not change its value with the SNR in high and
low SNR environments. Please note that Q mostly takes negative
values because its contribution reduces the error rate. On the other
hand, there is an undesirable increase in the error rate by distortion
in the enhanced signal. The increase or degradation in the error rate
starts from a high SNR and is almost the same until a low SNR.
For very low SNR values, this increase/degradation is progressively
increased as the SNR. This undesirable increase is represented by a
dashed line R. Because it is an increase, it takes positive values. The
resulting error rate with signal enhancement is an integration of P, Q,
and R and is represented by a solid line S. Equivalently, S=P+Q+R.

For easy comparison of the error rate P without signal enhance-
ment and the error rate S with signal enhancement, P and S are
copied to Fig. 3. The solid line has a hump, as shown by gray
circle, in a high SNR region where the error rate is higher than the
original value of P with no enhancement. Therefore, the error rate is
degraded for some SNR values. The position T of the hump varies
depending on the ASR engine and is not predictable.

3. SOLUTION: GAIN RELAXATION

A solution to this degradation in ASR error rate is to often or disable
signal enhancement in the hump region in Fig. 3 by applying a larger
gain than is actually calculated. Because a higher gain for softer sup-
pression is applied, it is called gain relaxation. When suppression by
the originally calculated gain is not significant, the gain is relaxed
with a large value to avoid fatal suppression of small-power compo-
nents which often play an important role in speech recognition. The
actual decision for relaxation is performed based on a ratio of aver-
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Fig. 2. Error rate with no enhancement (P), improvement by en-
hancement (Q), degradation by distortion (R), and error rate with
enhancement.
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Fig. 3. Input-signal SNR vs. error rate in ASR. Signal enhancement
helps reduce error rate except in a high SNR range.

aged input and output powers for more stable result. Gain relaxation
has an effect of flattening out the hump and eliminates degraded er-
ror rate in ASR.

Figure 4 illustrates an NS structure with gain relaxation. Spec-
tral gain is relaxed in the shaded area. Floor gain controller (FGC)
calculates a floor gain Gflr(l, k), representing a minimum value for
the spectral gain, based on the spectral gain Gs(l, k) and a noisy sig-
nal power |X(l, k)|2. Gflr(l, k) and Gs(l, k) are compared to take
whichever is bigger as a relaxed gain GR(l, k) as

GR(l, k) = max{Gflr(l, k), Gs(l, k)} (1)

This is a gain relaxation process where a floor gain Gflr(l, k) with a
maximum, which may be larger than Gs(l, k), pulls up the substan-
tial spectral gain for small distortion.

Shown in Fig. 5 are details of FGC. VAD calculates output to
input power ratios RL(l) and RH(l) in low and high frequency sub-
bands based on the current value of an input-output power ratio R0

between the corresponding frequencies kS1 and kS2 as

RS(l) = αRS(l − 1) + (1− α)R0, (2)

R0 =

kS2∑
k=kS1

|X(l, k)|2/
kS2∑

k=kS1

Gs(l, k)|X(l, k)|2, (3)

α =

{
αq R0 > RS(l − 1)
αs otherwise

, (4)

where S represents L or H and αq > αs. α is a parameter to control.
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Fig. 4. ASR oriented noise suppressor with gain relaxation. Spectral
gain is relaxed in the shaded area.

the tracking speed and accuracy. gVAD is determined as

gVAD =

{
1.0 RL(l) > gth or RH(l) > gth
0 otherwise

. (5)

For Gflr(l, k) calculation, signal and interference power, PS(l) and
PN (l), are estimated by

PB(l) = βPB(l − 1) + (1− β)P0, (6)

P0 =

N−1∑
k=0

|X(l, k)|2/
N−1∑
k=0

Gs(l, k)|X(l, k)|2, (7)

B =

{
S gVAD = 1.0
N otherwise

, (8)

based on the current input-to-output power ratio P0 in the fullband.
Finally, Gflr(l, k) is determined by

Gflr(l, k) =

Gmax Rflr(l) ≥ Rmax

GslopeRflr(l, k) +Gmin otherwise ,
Gmin Rflr(l) ≤ Rmin

(9)

Rflr(l) = PS(l)/PN (l), (10)
Gslope = (Gmax −Gmin)/(Rmax −Rmin). (11)

The final enhanced signal power in each frequency is obtained
by multiplying the noisy signal power |X(l, k)|2 by the relaxed gain
GR(l, k) as

|Y (l, k)|2 = GR(l, k)|X(l, k)|2. (12)

Because Gflr(l, k) is proportional to Rflr(l) which roughly repre-
sents SNR, gain relaxation is achieved.

Figure 6 illustrates a structure of the proposed directional NS.
Spectral gain calculation and multiplication are omitted for simplic-
ity, however, may be combined whenever it is needed. For gain re-
laxation, the same explanation as that for Fig. 4 applies by replacing
Gs(l, k) with Gd(l, k), |X(l, k)| with |Xs(l, k)|, and |Y (l, k)| with
|Ys(l, k)|.
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Fig. 5. Floor gain controller (FGC).
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Fig. 6. ASR oriented directional noise suppressor with gain relax-
ation. Directional gain is relaxed in the shaded area.

4. EVALUATIONS

A laptop PC equipped with two built-in microphones was placed on
a table in a 5 × 5 × 2.5 m room. The microphone spacing was 4.5
cm. The screen face was fixed with an angle of 110 degrees to its
keyboard and the distance from the center of its screen hinges to a
loudspeaker for target-speech radiation was set to 609.6 mm. Four
loudspeakers were arranged for noise sources as illustrated in Fig. 7.
An interfering speech signal that was located 914.4 mm away from
the center of the screen hinges with an angle of 60 degrees to the PC-
target-speech line. The target signals consisted of 10 male and 10
female native English speakers. The power ratio of the target signal
to the noise was adjusted to 16 dB and that to the interfering speaker
to 5 dB. A commercially available speech recognition engine was
used.

The recorded 2-channel signals were processed by a directional
NS with and without directional gain relaxation. The directional
gain Gd(k, l) was designed with a constant beamwidth along fre-
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Fig. 7. Layout of four loudspeakers for noise source.

Table 1. Parameters
Referece freq. k0 1 kHz kL1 1kHz Gmax 1.0
Passband @ k0 ±30 deg kL2 4kHz Gmin 0.3
Stopband @ k0 ±45 deg kH1 4kHz αq 0.8
Passband gain Gmax kH2 6kHz αs 0.2
Stopband gain Gmin Rmax 24dB β 0.98

gth −0.2dB Rmin 18dB

quency [28]. Evaluations were performed without a spectral gain
for four different conditions, namely, clean speech, babble noise,
stationary noise, and speech interference. They are to model an
ideal environment, a party environment, a car environment, and an
interfering-talker environment. The DOA of the interfering talker
was set to 45 degrees. Parameters are shown in Tab. 1.

Figures 8 and 9 show command error rate (CER) and word error
rate (WER) by no speech enhancement (NoSE), a directional NS
without gain relaxation (dNS) [28], and the directional NS with gain
relaxation (dNS-GR). A short bar exhibits a low error rate and good
performance. Figure 8 indicates that both dNS and dNS-GR achieve
error rates comparable to or lower than NoSE with respect to CER.
For speech interference, dNS-GR exhibits 0.5

In the case of WER in Fig. 9, the error rate by dNS is 1.7%
higher than that by NoSE for clean speech. It is 20 words of 1185
words and may not be significant in number. However, such an error
is more seriously recognized at a high SNR because there should be
little error by nature. This increase in error does not exist in case
of dNS-GR due to directional gain relaxation. dNS-GR has 0.8It is
not recognized as serious as the increase by dNS for clean speech.
Because of a lower SNR than clean speech, some degradation is an-
ticipated and small one is not noticeable by itself.

These characteristics are better demonstrated in Fig. 10 which
shows error-rate improvements for dNS and dNS-GR in cases of
CER and WER. Because this metric means a difference from the
error by NoSE, there is no score for NoSE itself. It should be noted
that a negative value represents degradation from NoSE. It is easy
to understand that dNS-GR achieves all positive scores. It demon-
strates that dNS-GR always provides some improvement over NoSE
in both CER and WER. As a trade-off, some compromise compared
to dNS needs to be accepted.
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Fig. 8. Command error rate (CER) for 200 commands.
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5. CONCLUSION

Gain relaxation in signal enhancement designed for speech recog-
nition with an unaware local noise source has been proposed. Gain
relaxation, which takes an SNR based gain floor or the original direc-
tional gain whichever has a larger value, has been introduced to make
softer suppression when there is little interference and no need for
suppression. It has been demonstrated by evaluation with recorded
signals that this relaxation eliminates potential degradation in speech
recognition caused by small undesirable distortion in the target sig-
nal components. Improvements over the output with no signal en-
hancement have been achieved without sacrificing the performance
for clean speech.
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