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ABSTRACT

Passive bistatic radar (PBR) systems use existing RF broad-
cast and communication signals in the environment for
surveillance and tracking applications. GSM mobile com-
munication signal based PBR systems are suitable for short-
range surveillance systems, but the low-bandwidth of the
signal results in low range resolutions when classical cross-
correlation based processing is used for target detection. An
alternative and more robust approach based on compressive
sensing (CS) is proposed here to achieve high range resolution
by performing fine gridding for the target scene. To avoid the
increased coherence and computational load associated with
the fine gridding, preprocessing steps are introduced in this
paper, which involve choosing a suitable CS basis by appli-
cation of spectral and subspace transformations. By so doing,
resolution improvement is achieved when a single channel
GSM signal and CS are employed for target detection.

Index Terms— Radar, compressive sensing, passive
bistatic radar, principle component analysis

1. INTRODUCTION

Passive bistatic radar systems utilize signals radiated by vari-
ous existing communication systems (e.g., FM, GSM, DVB-
T etc) [1, 2, 3, 4]. These systems have some advantages over
classical active radar systems as they are covert and require
low building and operational costs. In addition, they require
no frequency allocation due to their use of third party sig-
nals. Thus, PBR systems are attractive for various military
and commercial target detection and tracking applications [3].

In spite of the advances in PBR technology, for some of
the signals of opportunity, the detection performance is lower
than what is achievable in active radars. For standard single
channel GSM signal (of 200 kHz) the achievable range res-
olution is limited to being > 1854m [2, 3, 4]. By contrast
the Doppler resolution can be reasonable as it can reach ≈1
m/s for a 0.2 second integration time. Thus it is of interest to
formulate a PBR processing method which can ultimately im-
prove the GSM-PBR range resolution. Utilization of multiple
channels have been reported for this said purpose, for various
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PBR modalities [5, 6, 7]. However, the multiband processing
requires higher bandwidth (thus larger data set), and the re-
sults get affected due to waveform variations [7], differences
in Doppler resolutions for different channels and increased
ambiguity function sidelobes due to unequal channel spacing
[8, 9]. Therefore, GSM based classical multi-channels PBR
case, may suffer of all or some of these issues.

Here, compressive sensing (CS) [10, 11] based process-
ing is considered to achieve high range resolution in GSM-
PBR. CS is a sparse signal processing technique which can
recover either sparse or compressible but noisy signals by
solving a computationally tractable `1-norm regularized in-
verse problem. This technique, which involves measurement
matrix (Φ), dictionary (Ψ), and scene coefficient vector (α),
is able to provide better (range and Doppler) resolution with-
out being directly constrained by the sampling rate or pulse
length [12]. The application of CS to PBR has recently been
addressed in several papers to achieve various goals, though
not specifically for GSM-PBR systems. In particular, target
detection and tracking was described in [13] using reduced
number of training symbols for DVB-T/DAB signals. In [14]
CS techniques have been applied to detect targets in WiFi-
based PBRs using known training sequence to create the ba-
sis while the measurement matrix consisted of a subset of this
discrete Fourier basis. Few other papers focused on utilizing
suitable reconstruction methods [15, 16], data fusion in mul-
tistatic passive radar (MPR) systems [17, 18] etc.

In this paper we propose a CS based processing to achieve
high-resolution GSM-PBR by over-gridding the targets’
scene. This, of course, intensifies the coherence among
dictionary’s columns which degrades the performance of CS
reconstruction algorithms; in addition, it leads to large dic-
tionary size. To remedy these problems, we perform the
following:

1. We transform the time-domain data constituting the
dictionary to frequency domain to obtain a limited
number of useful data samples; hence the dictionary
size is greatly reduced.

2. We apply the principle component analysis (PCA) and
whitening to frequency domain samples to reduce co-
herence among columns of dictionary.
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The rest of the paper is organized as follows. A CS based
PBR model and the generation of time-domain dictionary is
presented in Section 2. Section 3 presents the concept behind
the use of spectral and subspace transformation analysis to
reduce the data coherence and computational load. The sim-
ulation results for the detection and localization of multiple
close targets using the proposed CS method are discussed in
Section 4. Finally, concluding remarks are given in Section 5.

2. CS GSM-PBR MODEL

The PBR target detection problem can be formulated as a
sparse recovery problem, as the possible range/Doppler com-
binations are much larger compared to the actual number of
targets. It is assumed that the direct path and the clean echo
(from direct path interference) signals are available.

2.1. CS PBR model

A PBR arrangement is shown in figure 1. A receiver is placed
at a distance (approximately 10-15 km) from a highway GSM
transmitting tower. The set-up is therefore suitable for de-
tecting ground moving or low flying targets. The surveillance
space can be discretized in a spatial grid with equally spaced
(square) cells. Possible targets from these cells will give rise
to the delay and Doppler values according to their bistatic po-
sitioning [19]. In order to limit the number of unknowns to
only range and Doppler, avoiding the need for the direction
of arrival (DOA) information, it is assumed that the PBR ar-
rangement is such that the spatial grid is closer to the trans-
mitter.

Fig. 1. CS PBR scene model.

2.2. Time domain dictionary formation

Using the time delayed and Doppler shifted versions of the
single channel GSM direct signal, a (time domain) dictionary
Ψ can be formed. The target’s position refers to a specific
differential delay (τ = (rtx+rrx−rd)/c), but its velocity can be
of any possible value. One needs to consider a finite number

of possible velocities as (v1, v2, ...., vD) with lowest possi-
ble resolution, to keep the dictionary size low. The bistatic
Doppler (fd) depends on the target velocity as well as the
bistatic spatial positioning (as in figure 1) [19]. The target-
scene coefficient vector, α is thus formed by vectorizing the
coefficients corresponding to these bistatic τ − fd values.

2.3. CS based target recovery process

According to the CS theory, if a signal x∈RP×1 is k-sparse
in some basis Ψ ∈ RP×N , i.e. only k (� N) columns of
Ψ are sufficient to model x, then it is possible to recover it
with high probability from O(k logN) measurements via `1-
norm minimization [11]. A measurement matrix Φ ∈ RM×P
is formulated with M � N , to recover the signal from M
linear measurements as

y = Φx + e = ΦΨα+ e (1)

where α∈RN×1 is a vector with coefficients αi’s and e is
the noise in the system. The design of Φ affects the recovery
success ofα. In order to find the sparsest solution, an `1-norm
of α is minimized as

α̂ = min
x
‖α‖1 s.t. ‖y −ΦΨα‖2 ≤ ε (2)

where the threshold ε is related to the measurement noise
as ‖n‖2 ≤ ε. Various alternatives have been formulated
for equation (2) [20]. Here, we utilize an algorithm known
as gradient projection for sparse reconstruction (GPSR) [21]
which reconstructs the target spaceα from the sensing matrix
A = ΦΨ ∈ RM×N and the measurement vector y∈RM×1

min
α

1

2
‖y −Aα‖22 + µ ‖α‖1 with µ = 0.1

∥∥∥ATy
∥∥∥
∞

(3)

When reconstruction of α is done using time domain dic-
tionary for a sizable spatial and velocity grid points, the com-
putational burden becomes excessive and the reconstruction
suffers much due to the extraordinary coherence of the dictio-
nary atoms. Thus in the following section we explore the way
to overcome such obstacles.

3. INCOHERENT DICTIONARY FORMULATION

Here we first look for a suitable dictionary in another domain
other than the time-domain.

3.1. Spectral sparsity

If the dictionary Ψ is transformed in the frequency domain
it will have limited/compressible information. This spectral
compressibility can be utilized to reduce the computational
burden of the CS reconstruction process. Thus, the spectral
analysis of the dictionary Ψ = [ψ1, ψ2, · · · , ψN ] ∈ CP×N
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is first performed via Fourier transform and power spectral
density (PSD) calculations as

ψ̃i = FFT (ψi) ⇒ ψ̃PSDi = |ψ̃i|2/P (4)

where i = 1, 2, . . . , N ; P is the number of samples of each
ψ̃i. In figure (2), we show ψ̃PSDi where we zoom out its
dominant part. ψi has been selected randomly from the set
of {ψi} constituting the time-domain dictionary described in
the simulation example (Section 4). Note that the spectral
domain has dominant part with Q samples (Q � P ). There-
fore, these Q samples carrying ∼95% of the information can
be selected to form a new dictionary, which we call here the
spectral dictionary.

Fig. 2. Zooming out the dominant part of ψ̃PSDi .

3.2. Subspace transformation

The creation of the (truncated) spectral dictionary above re-
duces the computational burden. However, it still has high
coherence, which makes the performance of CS reconstruc-
tion algorithms deteriorate. Thus, it is required to transform
the spectral dictionary into another dictionary where the new
dictionary becomes incoherent. This is achieved by imple-
menting the PCA in combination with a whitening process
[22, 23]. The resulting dictionary will have few uncorrelated
samples with maximum variance among the data. First, the

(truncated spectral) dictionary Ψ̃ =
[
ψ̃1, ψ̃2, · · · , ψ̃Q

]T
∈

RQ×N is mean centered as ψ̃j = ψ̃j − E
[
ψ̃j

]
, where j =

1, 2, . . . , Q. After which, the singular value decomposition
(SVD) algorithm is applied to Ψ̃ as

Ψ̃ = UΣV ∗ (5)

where U ∈ RQ×Q contains eigenvectors of the covariance
matrix of Ψ̃ and its eigenvalues (sorted in decreasing order)
are given as λ =

√
diag (Σ) ∈ RQ×1. The first M eigenvec-

tors from matrix U = [u1, u2, · · · , uM , · · ·uQ]
T are selected

in accordance with the first M eigenvalues from vector λ =
[λ1, λ2, · · · , λM , · · ·λQ]

T such that λ1 > λ2 > · · · > λM >

· · · > λQ. Thus we have Ũ = [u1, u2, · · · , uM ]
T ∈ RM×Q

and the new dictionary after PCA operation will be

Ψ̂ = ŨΨ̃ (6)

Here, the M principle components are chosen such that
the resultant data set in equation (6) has approximately 95%
of data variance. After that, the data set is whitened (decorre-
lated) by the whitening transform matrix W ∈ RM×M such
that W = ET

/
√
D, where matrix E ∈ RM×M is formed

from the eigenvectors of the sample covariance matrix of Ψ̂ ∈
RM×Nand D ∈ RM×M is a diagonal matrix whose elements
are the eigenvalues λ̂ ∈ RM×1. Consequently, the overall
subspace transformation can be given as

Ψ̌ = W Ψ̂ = WŨΨ̃ (7)

where W ∈ RM×M is the whitening transformation matrix
and rows of matrix Ũ ∈ RM×Q are the first M eigenvectors
for the covariance matrix of Ψ̃ ∈ RQ×N .

Once this new incoherent dictionary Ψ̌ is formed, the tar-
get scene recovery is done using the GPSR algorithm as dis-
cussed in Sub-section (2.3)

4. SIMULATION RESULTS

Here the generation of simulation scenarios and the results
are discussed for a surveillance space comprising multiple
ground moving or low flying targets.

4.1. Signals and target scenario generation

The GSM signals were generated using SystemVue simula-
tion environment (from Agilent Technologies) for GSM-900
(935 - 960 MHz downlink) band. The target response is re-
ceived due to a single channel GSM signal reflected from
the point targets positioned at specific grid cells. The (time-
domain) dictionary is formed utilizing the direct signal based
on the discrete delay-Doppler gird and an observation time of
0.6554 seconds.

The proposed PBR reconstruction system is tested for a
target scenario which is shown in figure (3). The target space
has an area of 1km × 1km with range resolution ∆R =
100m, between two consecutive (possible) targets; thus, hav-
ing a fine grid of 10 × 10 cells. Each possible target can
have a velocity from 50 km/h to 250 km/h with a velocity
resolution of 2 km/hr (∼ 0.56 m/s). Of these possible 10,100
(=10x10x101) delay-Doppler combinations, it is assumed that
only 18 targets are present, which makes the scenario quite
sparse. In figure (3), for the purpose of clarity, spatial in-
dices from x and y-directions are grouped together following
a convention as shown in figure (1). The targets are placed
in three clusters where some of the targets took same posi-
tion/velocity values as their close neighbors. For example, the
target-cluster in the bottom consists of 3 targets with the same
location index and 4 targets with the same velocity value, and
for this reason part of this cluster appears as a line. Moreover,
a noisy environment with SNR level of 15 dB is considered.
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Fig. 3. Original scenario with multiple moving targets.

4.2. Reconstruction results

During the reconstruction process, both the location index
and velocity of the target is reconstructed in a single step.
The number of CS measurements was about 10% of the num-
ber of atoms in the dictionary. Also the elements of Φ were
drawn from Gaussian random matrices. Measurement noise
with normal distribution was added to the CS measured sig-
nal. The target scene recovery is done using the GPSR algo-
rithm as discussed in Sub-section (2.3). Figure (4) shows the
reconstruction results for the target space when the truncated
spectral dictionary Ψ̃ is used, which turns out to be inaccu-
rate.

Fig. 4. Target scene reconstruction using Ψ̃.

On the other hand, the PCA and whitening process when
applied to the spectral dictionary does allow for excellent tar-
get space reconstruction. The dictionary Ψ̌ was used in this
case and the excellent recovery results are shown in figure (5).
These results clearly show that the reconstruction via inco-
herent dictionary is far better than that via spectral dictionary.
Also, both range and velocity resolutions achieved here are
much better than what is achievable using classical matched
filtering.

Fig. 5. Target scene reconstruction using Ψ̌.

4.3. Reconstruction performance evaluation

An image quality metric, structural similarity index (SSIM),
is employed here for the quantitative measure of the recon-
struction process accuracy. This index measures the similarity
between two images [24], with values 0 for minimum similar-
ity and 1 for maximum similarity. Figure (6) shows the effect
of SNR on SSIM when the reconstruction is performed us-
ing the incoherent dictionary. As noticed, the reconstruction
accuracy remains fairly similar above ∼15 dB SNR.

Fig. 6. Structural similarity index (SSIM) vs. SNR values.

5. CONCLUSIONS

A modified processing scheme is presented here for target de-
tection using passive bistatic radar. A simplified but complete
simulation scenario is generated to implement and test the
GSM based PBR processing. To achieve high range resolu-
tion in GSM-PBR using single channel, compressive sensing
(CS) has been implemented which makes use of dictionary
generated by spectral transformation and PCA in combina-
tion with whitening. This allows for over-gridding the targets’
scene to achieve finer delay-Doppler resolution. Simulation
results have been presented to show the effectiveness of pro-
posed algorithm in detecting targets separated by a distance
as low as 100m using single GSM channel.
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