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ABSTRACT

Vibration sensing is essential in many applications. Tradi-
tional vibration sensors are contact based. With the advance
of low-cost and highly integrated CMOS radars, another class
of non-contact vibration sensors is emerging. In this paper,
we present detailed analysis on obtaining vibration param-
eters using frequency modulated continuous wave (FMCW)
radars. We establish the Cramer Rao lower bounds (CRLB)
of the parameter estimation problem and propose an estima-
tion algorithm that achieves the bounds in simulations. These
analysis show that vibration sensing using FMCW radars can
easily achieve sub-Hertz frequency accuracy and micrometer
level amplitude accuracy.

Index Terms— frequency modulated continuous wave
(FMCW) radars, vibration sensors, Cramer Rao lower bound,
parameter estimation.

1. INTRODUCTION

Vibration monitoring and analysis is an important tool in
many applications. In rotary machinery [1], such as motors
and engines, it can help to achieve optimum performance and
provide early indications of faulty components. In structure
health monitoring [2], it can be used to monitor the health of
bridges and buildings to ensure the safety of these structures.
In health care, the movement of human chests is also a vi-
bration signal that provides information about respiration and
heart rates [3].

Traditionally, most vibration monitoring applications use
contact-based vibration sensors, such as accelerometers. With
the development of low cost and highly integrated CMOS
radars [4, 5], another class of vibration sensors is emerging,
which allows non-contact measurements of vibration signals.
The non-contact approach is more flexible and avoids any
coupling issues between sensors and vibration objects.

Among different architectures for radar based vibration
sensors, the frequency-modulated continuous wave (FMCW)
[6] architecture is one of the most flexbile. In a FMCW sys-
tem (see Fig. 1), a periodic chirp signal is generated by a fre-
quency synthesizer and transmitted to the target. The mixing
of reflected signal and the transmitted signal results in a low
frequency beat signal, whose frequency directly corresponds
to the range of the target. The phase of the beat signal across

Waveform
Generation

Synthesizer

PA

ADC Vibrating
Motor

Radar 
Processing

LNA

Fig. 1. Simplified block diagram of a FMCW radar system.

multiple chirps can be tracked to provide vibration or Doppler
information of the target. The architecture is also well-suited
for low-cost CMOS implementation due to the low peak-to-
average power ratio of the transmitted signal, which allows
higher efficiency power amplifier operation. Because of these
advantages, we focus on vibration parameter estimation using
the FMCW approach in this paper. In Section 3, we present
the details of FMCW radar signal processing. New Cramer-
Rao lower bounds (CRLB) for vibration parameter estimates
are derived in Section 4. We then set up simulations and
present a new estimation algorithm that achieves the bounds
in Section 5. Finally, we conclude in Section 6.

2. RELATION TO PRIOR WORK

Vibration signal extraction using FMCW radar has been pre-
sented in [7] in the context of human vital sign detection.
But no performance bounds are available to understand the
theoretical limits of the estimation approach. Previous CRLB
bounds derived for single tone parameter estimation [6] and
motion parameter estimation for dual-frequency radar [8]
cannot be applied here because of different signal models.
The main contribution of this paper is the new CRLBs for
these type of estimation problems and a new algorithm that
achieves the performance bounds in simulations.

3. FMCW RADAR SIGNAL PROCESSING

Fig. 2 shows typical transmitted and received chirp signals in
an FMCW system. Denoting the time within each chirp ramp
period as t, i.e., 0 < t < Tr, a single transmitted chirp signal
is defined as

s(t) = exp
[
j(2πfct+ πKt2)

]
, K =

B

Tr
, (1)
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Fig. 2. A sequency of L transmitted (solid line) and received
(dashed line) chirp signals.

where fc is the carrier frequency, and B is the bandwidth of
the chirp signal. Assume that the distance between the target
and the radar is

R(t) = R0 + x(t), (2)

where R0 is the nomial position, and

x(t) = m sin(ωmt) (3)

is the vibration movement of the target with amplitude m and
frequency ωm. The round trip delay of the radar signal bounc-
ing off the target is given by

td =
2R(t)

c
=

2[R0 + x(t)]

c
, (4)

which results in the following received signal.

r(t) = A exp
[
j(2πfc(t− td) + πK(t− td)2)

]
, (5)

where A accounts for the amplitude change of the signal
caused by the round trip propagation and reflection. For each
chip, only the time period between td and Tr is used for mix-
ing since the time period between 0 and td generates a high
frequency signal that is usually filtered out. Within the valid
period, the beat signal for a single chirp after mixing becomes

y(t) = s∗(t)r(t)

≈ A exp {j [2πKtdt+ 2πfctd]} , (6)

where the term associated with t2d is omitted because t2d <<
tdt. From (6), we can see that the round trip delay is directly
related to the beat frequency and phase. However, the vari-
ation of x(t) is very small within a single chirp. To obtain
vibration signatures, we need to track the phase change of the
beat signal across a sequence of L chirps. The round trip de-
lay for the l-th chirp within the chirp sequence is

td =
2[R0 + x(lTr + t)]

c
. (7)

Close inspection of x(lTr + t) generates the following ap-
proximation, considering that ωmt term is small.

x(lTr + t)

= m sin[ωm(lTr + t)]

= m {sin(ωmlTr)cos(ωmt) + cos(ωmlTr)sin(ωmt)}
≈ m sin(ωmlTr). (8)

Except for td, the beat signal for the l-th chirp still has the
same expression as in (6) because of the periodicity of the
chirp sequence, i.e., s(lTr+ t) = s(t), and r(lTr+ t) = r(t).
Therefore, we can substitute (7) and (8) into (6) and obtain

y(lTr + t) = A exp

{
j

[
4πKR0

c
t+

4πfcR0

c

+

(
4πKt

c
+

4πfc
c

)
m sin(ωmlTr)

]}
.(9)

After sampling and omitting 4πKt
c (Kt << fc in typical

FMCW radars for 0 < t < Tr), we have

y(lTr + nTs) = A exp [j (ωbnTs + ψl)] , (10)

where Ts is the sampling period and

ωb =
4πKR0

c
(11)

ψl =
4πfcR0 + 4πfcm sin(ωmlTr)

c
. (12)

In FMCW radar terms, the beat signal is a 2-dimentional func-
tion of the fast time n and slow time lTr. The goal of the es-
timation algorithm is to find the vibration amplitude and fre-
quency. In order to do that, we have to find estimates for ωb
and ψl from the sampled beat signal. Those can be obtained
by running fast Fourier transform (FFT) on the fast time, usu-
ally referred to as the range FFT [9]. To illustrate the process,
we take aN -point discrete-time Fourier transform (DTFT) on
the beat signal, i.e.,

Y (ejω, l) =

N−1∑
n=0

exp[j(ωbnTs + ψl)]exp(−jωn)

= exp(jψl)exp[−(ω − ωbTs)(N − 1)/2]

× sin [(ω − ωbTs)N/2]
sin [(ω − ωbTs)/2]

(13)

If we select ω̂ = ωbTs, i.e., the frequency corresponding the
the maximum of DTFT output, then the DTFT output at that
frequency only has the phase term, ejψl . In reality, FFT has
limited resolution, the residue phase caused by imperfect fre-
quency estimation can have an impact on the estimation of
ψl term. Interestingly, if the DTFT is taken using index from
−N/2 to N/2− 1 in (13), then the effect of the residue term
is much smaller since the DTFT introduces much less phase
shift for ω̂ that deviates from the true ωbTs.

4. CRAMER-RAO LOWER BOUND

In this section, we establish the CRLBs of vibration parame-
ter estimation. The parameter estimation problem in (10) can
be simplified into the estimation of the parameters of the fol-
lowing model given a block of N by L samples of y(n, l).

y(n, l) = A1exp {j [ω1n+ φ1 +A2sin(ω2l + φ2)]}
+ w(n, l), (14)

2225



wherew(n, l) is assumed to be i.i.d. random variables follow-
ing the complex Gaussian distribution with variance 2σ2. All
model parameters, A1, ω1, φ1, A2, ω2, and φ2 are assumed
to be real. To derive the bounds, we start with the probablity
density function (PDF) of the noise, which is

p [w(n, l)] =
1

2πσ2
exp

{
− 1

2σ2
||w(n, l)||2

}
(15)

Thus, the PDF of a block of N ×L measured data given a set
of model parameters is

p [Y;θ]

=

L−1∏
l=0

N−1∏
n=0

1

2πσ2
exp

{
− 1

2σ2
||y(n, l)−A1e

jα||2
}

(16)

where α is used to denote ω1n+φ1+A2sin(ω2l+φ2) and θ =
[A1, ω1, φ1, A2, ω2, φ2].With the PDF function in (16), we
can derive the Fisher information matrix for θ, which is given
in (22). Note that in the Fisher information matrix, the terms
that involve linear summation of sinusoidal functions of ω1

and ω2 are approximated by zero, which is valid for large N
and L. The CRLBs of the estimators of the model parameters
can now be found by examining the diagonal values of the
inverse of the Fisher information matrix, which are

var(A1) =
σ2

NL
(17)

var(ω1) =
12σ2

A2
1NL(N

2 − 1)
(18)

var(φ1) =
2σ2(2N − 1)

A2
1NL(N + 1)

(19)

var(A2) =
2σ2

A2
1NL

(20)

var(ω2) =
24σ2

A2
1A

2
2NL(L

2 − 1)
(21)

var(φ2) =
4σ2(2L− 1)

A2
1A

2
2NL(L+ 1)

(23)

The variance for A1, ω1, and φ1 are the same as those shown
in [6] by using NL as the data length and setting the n0 pa-
rameter in [6] to zero. The additional unknown parameters,
A2, ω2, and φ2 do not affect the bounds of those parameters.

They are essentially decoupled except that the amplitude A1

affects estimation accuracy of A2, f2, and φ2.
To express the bounds directly in terms of FMCW param-

eters, we can utilize the following relationships obtained by
comparing (14) and (10).

SNR =
A2

1

2σ2
, ω2 = 2πfmTr, A2 =

4πfcm

c
. (24)

After substituting (24) into (20) and (21), the CRLBs for vi-
bration frequency and amplitude are given by

var(m) ≥ c2

16π2 N L f2c SNR
(25)

var(fm) ≥ 3c2

16π4 T 2
r m

2 N L (L2 − 1)f2c SNR
(26)

As an example, for a typical set of FMCW parameters used in
the automotive applications, i.e., SNR = 10dB, fc = 76GHz,
N = 875, L = 1000, the standard deviation bound of the
amplitude is 0.11 um. For a vibration amplitude of 10 um, the
standard deviation bound of the vibration frequency is 0.04
Hz. From these numbers, we can see that the FMCW radar
approach is capable of providing very accurate estimates of
the parameters of a vibration signal.

5. PARAMETER ESTIMATION ALGORITHM

In this section, we set up simulations to verify the CRLBs
presented in Section 4. The received data in the simulations
were generated according to the signal model in (14) with
the following parameters. A total of 500 random runs were
performed to obtain variance of estimated parameters.

• N = 128, L = 128, A1 = 1, A2 = 0.5

• f1 and f2 uniformly distributed from 0.05 to 0.45

• φ1 and φ2 uniformly distributed from −π/2 to π/2

Parameter estimation is done in two steps. In the first step,
for each l, we run FFT on index n and determine the fre-
quency and phase corresponding to the maximum FFT ampli-
tude, recorded as f̂1(l) and φ̂1(l), respectively. The estimates
for each l are then averaged across all chirps to generate the
final estimates, f̂1 and φ̂1. The simulation results for different

I(θ) =



NL
σ2 0 0 0 0 0

0
A2

1NL(N−1)(2N−1)
6σ2

A2
1NL(N−1)

2σ2 0 0 0

0
A2

1NL(N−1)
2σ2

A2
1NL
σ2 0 0 0

0 0 0
A2

1NL
2σ2 0 0

0 0 0 0
A2

1A
2
2NL(L−1)(2L−1)

12σ2

A2
1A

2
2NL(L−1)
4σ2

0 0 0 0
A2

1A
2
2NL(L−1)
4σ2

A2
1A

2
2NL

2σ2


(22)
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Fig. 3. Comparison between variances obtained in simula-
tions and the CRLB for f1.

SNRs are shown in Fig. 3. The results match well with the
theoretical bounds.

In the second step, we estimate parameters f2 and φ2. A
simple approach for achieving this is to unwrap the phase,
φ̂1(l), recorded in the first step, remove its mean, and run an-
other FFT on the resulting sequence. Then the frequency and
phase associated with the maximum FFT output become the
estimates of f2 and φ2. However, as shown in red circle mark-
ers in Fig. 4, the variances of the estimates obtained using this
approach are significantly higher than the CRLB bounds.

The difference is caused by two main factors. The first
one is the demodulation of f̂1. When we obtain φ̂1(l), we
essentially demodulate each chirp by f̂1(l) through the FFT
process and then find the resulting phase. Although we have
a more accurate estimate of f̂1, which is obtained through
averaging f̂1(l), it is not used in the process of estimating
φ̂1(l). This inaccuracy causes larger variances in estimating
f2 and φ2. A more accurate approach to obtain φ̂1(l) is

φ̂1(l) =
1

N

N−1∑
n=0

6
[
y(n, l)exp(−j2πf̂1n)

]
(27)

The second factor is the residue correlation in the basis func-
tions of the FFT. This is not problem in f1 estimation since
f1 is a complex tone, in which case the maximum likelihood
(ML) solution does not rely on perfect orthogonality [6]. The
vibration signal here is a real sinusoidal function. An accu-
rate parameter estimation requires perfect orthogonality [10,
p. 193] between the cosine and sine basis functions used in
the FFT process, which is not possible for limited number
of samples. To be more accurate, a least-square based grid
search algorithm [10, p. 193] is required at the expense of
significantly more computation than FFT. With more accurate
frequency demodulation and least-squares, we can achieve
variance close to the CRLB as shown in the green diamond
markers in Fig. 4 for both f2 and φ2. Another source of errors
in the variance of φ2 using FFT comes from phase wrapping
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Fig. 4. Comparison between variances obtained in simula-
tions and the CRLBs for f2 and φ2.

around for a few inaccurate phase estimates, which causes
very large errors. With the new estimation approach, this is-
sue no longer affects results.

The two step approach presented in this section can also
be shown to be the ML solution to the estimation problem in
(13) by noticing the decoupling of the tone parameters in (22)
and using arguments similar to those used in [6] and [10].

6. CONCLUSIONS

This paper presents detailed analysis on using FMCW radar
for vibration parameter estimation. New CRLBs are es-
tablished to understand the theoretical accuracy that can be
achieved by the FMCW radar approach. The CRLBs are
verified in simulations and can be achieved by the estimation
algorithm developed in this paper. The analysis in this paper
shows that vibration parameters measured with FMCW radar
can achieve very good accuracy, which have the great poten-
tial to be used as precision non-contact vibrations sensors.
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