
DETECTION OF DROPS MEASURED BY THE TIME SHIFT TECHNIQUE FOR SPRAY

CHARACTERIZATION

Simon Rosenkranz1,2,3 Cameron Tropea1 Abdelhak M. Zoubir 2

1 Institute of Fluid Mechanics and Aerodynamics, Technische Universität Darmstadt, Germany
2 Signal Processing Group, Technische Universität Darmstadt, Germany

3 Graduate School of Computational Engineering, Technische Universität Darmstadt, Germany

ABSTRACT

Characterizing drops in a spray process is of high interest in

many areas, such as car painting or spray drying. The Time

Shift (TS) technique provides an efficient and accurate way

to optically measure size and velocity of individual droplets

in sprays. Its realization in practice is not wide spread, thus

the necessary signal processing of the measured data has not

yet been fully developed or optimized. However, the TS tech-

nique is the only technique deemed suitable for online spray

monitoring. In this study, we derive a filtering concept by

using only a single filter that can be used for detection of

droplets measured by the TS technique. We show that our

approach is optimal in terms of detection power. Addition-

ally, we show that the average detection power does not ex-

ceed certain limits, close to the one of a conventional matched

filter bank.

Index Terms— Time Shift Technique, Detection, Spray

Characterization

1. INTRODUCTION

Spray characterization is important for a variety of applica-

tions, such as spray painting or spray drying, whereby the

efficiency and quality of the spray process depends on atom-

ization parameters like flow rate, injection pressure, airflow

rate etc. that directly influence drop sizes and velocities. For

instance, in coating processes, small droplets lead to over-

spray, whereas large drops lead to surface defects. Therefore,

spray characterization methods are essential tools for quality

assurance, development and optimization of these processes;

a review of measurement methods and corresponding tech-

niques for spray characterization is available in [1].

The time shift (TS) technique provides an efficient and

accurate method to measure size and velocity of individual

droplets in sprays in real time [2], [3], [4]. Up to now it is the

only technique which is capable of measuring not only trans-

parent but also non-transparent particles and droplets, which

often occur in industrial applications. In addition, this tech-

nique does not require post-factory alignment and it can be

operated in backscatter.

It was first introduced by Semidetnov in 1985 [5] and was

further developed by Damaschke et al. in 2002 [6], [7].

The TS technique has also been called the pulse displacement

technique and several variations have been discussed by Lin

et al. [8]. The new developments and validation of this tech-

nique can be found in [9], [10] and [11]. This technique is

based on the light scattering of drops passing a shaped laser

beam. The scattered light is detected by at least two sensors

located at different scattering angles. The time shift between

two acquired signals and the characteristics of the measured

signals directly depends on drop size and velocity.

Even though the TS principles go back to 1985, its real-

ization in practice is not wide spread. As a consequence, the

signal processing of the measured data has not yet been exten-

sively investigated or developed. Dealing with high sampling

rates due to the large number of drops per time, requires fast

signal processing techniques. Additionally, a cheap sensor

production that limits resources on the FPGA is necessary.

In this study, we introduce a mathematical framework to

allow the detection of drops measured by the TS technique.

Typically, a generalized matched filtering concept as in [12]

can be applied to identify whether a drop is present in the

measured signal or not. However, this concept requires a filter

bank that is not feasible for the TS technique, since space and

resources are strongly limited on the FPGA to allow a low-

cost production. In this contribution, we replace the matched

filter bank with a single filter that is applied for the detection

of drops. The filter is designed in such a way that its detec-

tion power is maximized when a specific distribution of the

expected drop characteristics is assumed.

The paper is structured as follows: in Section 2, we ex-

plain the measurement principle of the TS technique and the

applied sensor setup. Section 3 describes the detection of

drops measured by the TS technique. This includes a mathe-

matical framework, the matched filter bank and its reduction

to a single optimal filter. Section 4 presents the results by

comparing the filter bank with the single optimal filter. The

paper finishes with a conclusion and a short outlook in Sec-

tion 5.
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(a) (b)

Fig. 2: (a) Sensor setup, including two laser beams and four detectors. (b) Schematic sensor setup with laser distance b, beam

width w and scattering angle Θs at a specific working distance WD.
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Fig. 1: Received signal S(t) at scattering angle ΘS caused by

a transparent drop with velocity vz in z direction, focused by

a Gaussian laser beam with intensity I(z).

2. MEASUREMENT PRINCIPLE

We will briefly summarize the measurement principle, while

a detailed description of the TS technique can be found in

Albrecht et al. [6]. To characterize sprays using the TS tech-

nique, a shaped (typically Gaussian) laser beam is focused at

the measurement position in the spray. When a drop passes

the shaped beam, it transforms the intensity of the laser in

space into a time dependent signal on a detector. The light

scattered from a single spherical particle can be interpreted

as the superposition of all scattering orders present at the de-

tector location. The intensity of the scattering orders are de-

scribed by the Debye series [13] expansion of the Mie [14]

scattering functions, or by using a geometric optics approach

[15], [16] to compute the scattered field. When a particle

passes through the focused light beam, the scattered light is

detected by photodetectors focused onto the scattering cen-

ter. Each photodetector provides a time signal known as a

time-shift signal (Fig. 1). Depending on the scattering angle

and relative refractive index, different scattering orders and

their modes can appear at any one scattering angle [7], conse-

quently, through placement of the detector, certain scattering

orders can be selected. The signals from the detectors placed

above or below the incident beam exhibit signals which are

mirrored in time. The applied conventional sensor system

uses four different sensors, displaced in space (Fig. 2a and

Fig. 2b), resulting in four different time series each capturing

the mentioned light intensities.

3. DETECTION OF DROPS

3.1. Framework

For simplicity, we assume our sensing system measures si-

multaneously four sampled time series, containing either the

information of a present droplet or not. Let r(i) be the sam-

pled time series received from the ith sensor, i.e. i = 1, 2, 3, 4
and r ∈ RN with N denoting the number of samples. Fur-

thermore, let s ∈ RN be the ideal sampled signal, capturing

the reflection and refraction of light when a droplet passes a

focused (in our case Gaussian) laser beam. Exemplarily we

focus on a spray process containing transparent droplets, e.g.

water (Fig. 1). We know from light scattering physics that the

ideal signal received at time t is given by

s(t) =

P
∑

p=1

Apexp
(

−(t− tp)
2/σ2

0

)

, (1)

where P , Ap, tp and σ0 are parameters, depending on the

droplet characteristics, the sensor settings and the relative

flight path between droplet and sensor [9], [2]. We define

a parameter vector Θ ∈ RD containing all D unknown pa-

rameters that characterize the signal pattern caused by an

individual droplet. Hence, we write s (Θ), i.e. the ideal sig-

nal s is parameterized by an unknown parameter vector Θ.

The following model is used to describe the received data r,

now for a fixed, individual sensor:

r = ks (Θ) + n, (2)
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with noise vector n ∈ RN and a constant k > 0 if a droplet

is present or k = 0 if no drop occurs. In this work, the aim

is to detect whether a droplet is present or not. Neglecting

its complexity, the problem can be identified as a detection of

a known signal with unknown parameters in noise. A com-

mon way to solve the described problem is to use hypothesis

testing to decide whether k > 0 (hypothesis H1) or k = 0
(hypothesis H0).

3.2. Matched Filter

To begin with, we need to recap the matched filter concepts

fitted to our scenario. Let us assume the two hypotheses

H1 : r = s(Θ)+ n (3)

H0 : r = n (4)

where Θ is known and n is Gaussian noise n ∼ N (0, σ2).
For simplicity use s instead of s(Θ). Having received a mea-

sured signal, a Neyman Person test [17] is applied to choose

a particular hypothesis:

P (r|H1)

P (r|H0)

H1
>

<

H0

λ (5)

where the left hand side is compared to some threshold λ that

is found from constraints. Typically, Eq. (5) is written as

T (r)
H1

>
<

H0

λ0 (6)

where T (r) = sTr is the test statistic that is compared to

a threshold λ0 = log(λ). However, the key point is that Θ
is generally unknown. A typical way out is the generalized

matched filtering concept as in [12] that requires a matched

filter bank (MFB) with the size related to the parameter space

of Θ. Here, for each possible Θ a filter is designed that

matches the income. Being limited in resources on the FPGA

for the detection part, a work-around is essential.

3.3. Single Optimal Filter

This section derives a work-around to avoid the large filter

bank that is not realizable for the TS technique in practice.

Suppose we do not receive r but r∗:

H1 : r∗ = s(Θ∗)+ n (7)

H0 : r∗ = n (8)

where Θ∗ is a random variable, capturing the information of

different drop characteristics. For simplicity we use s∗ instead

of s(Θ∗). Similar as in Section 3.2 the test statistic and its

distributions are now given by

T ∗(r) = sT r∗ (9)

T ∗(r|H1, s
∗) ∼ N (sT s∗, σ2sT s) (10)

T ∗(r|H0, s
∗) ∼ N (0, σ2sT s) (11)

The probability of falsely detecting a drop α (false alarm rate)

is then defined as

α = P (T ∗ > λ0|H0, s
∗) (12)

= 1− Φ

(

λ0

σ
√

(sT s)

)

(13)

where Φ is the standard normal cumulative distribution func-

tion. Similarly, the probability of missing a droplet β (miss

detection) is given by

β = P (T ∗ < λ0|H1, s
∗) (14)

= Φ

(

λ0 − sT s∗

σ
√

(sT s)

)

(15)

Since s and s∗ are parameterized by Θ and Θ∗, respectively,

the detection power PD is given by

PD(Θ,Θ∗, α) = 1− β (16)

= 1− Φ

(

Φ−1(1− α)− sT s∗

σ
√

(sT s)

)

(17)

Note that PD is identical to the one of a conventional matched

filter when s = s∗, which is also known as a most powerful

test [19]. However, since s is unknown in our scenario, s 6=
s∗ and the detection power is decreased. To tackle the loss,

we aim for an s that still guarantees detection power being

close to the matched filter. In the described scenario, our goal

is to find a Θ to obtain an optimal PD, independent of Θ∗.

Treating Θ∗ as a random variable, we want to find a particular

Θ∗ that maximizes the expected detection power of PD:

Θ̂
∗

= argmax
Θ

EΘ∗(PD(Θ,Θ∗)) (18)

where EΘ∗(·) is the expected value with respect to the ran-

dom variable Θ∗. We call the obtained filter from Eq. (18)

the Single Optimal Filter (SOF).

4. RESULTS

The setup to analyze the performance of the SOF is the fol-

lowing. For simplicity, let Θ contain only the velocity v of the

droplet. The velocity v is related to Eq. (1) by v = wσ0/
√
2,

where w = 5µm. Note that similar to v, Θ will be mea-

sured in m/s. A reasonable assumption for the distribution

of the drop velocity is a uniform distribution to not favor a

particular drop velocity. Since a typical velocity range for flat

fan nozzles at operation pressure does not exceed 50m/s, we

choose Θ ∼ U(1, 50) that defines our measurement range.

The data is sampled at fs = 40Mhz and the SNR is defined

by SNR = A/σ, where A is the amplitude of the signal.

To begin with, we show the performance of the SOF

that we obtain by solving Eq. (18) numerically. Using Eq.
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Fig. 3: (a) Average detection power (E(PD)) for the matched filter bank (MFB) and the single optimal filter (SOF) over false

alarm rates α, and worst case (wc) detection power (PD) and best case (bc) detection power for MFB and SOF. (b) Detection

power (PD) over SNR for given false alarm rates α. (c) Detection power (PD) over different drop velocities Θ∗ at different

SNRs.
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Fig. 4: Design of Θ̂
∗

depending on the SNR and the given

false alarm rates α

(17), the Receiver Operating Characteristics (ROC) [18] are

given in Fig. 3a. Here, we show the average detection power

E(PD) obtained by averaging over the expected velocity

range for both, the matched filter bank (MFB) and for the

single optimal filter (SOF). Additionally, we show the worst

case (wc) and the best case (bc) detection power, resulting

from the hardest detectable drop type and the best detectable

drop type, respectively. First, we observe that the detection

power of the proposed filter (SOF) is close to a MFB that cov-

ers the complete measurement range from 1 − 50m/s. This

holds for both, the easiest detectable drop (bc) and the hardest

detectable drop (wc). However, we save a lot of resources by

using only a single filter instead of the complete filter bank.

Fig. 3b depicts the detection power PD for different SNR

values over typical false alarm rates of α = 0.01, α = 0.05
and α = 0.1. Again, we compare the MFB with the SOF. We

observe that for an increasing SNR, the performance differ-

ences between SOF and MFB decrease. The next part of this

contribution is essential for the design of the obtained SOF.

Fig. 4 shows which Θ̂∗ to choose for a given SNR and the

desired false alram rate. We observe that at higher SNR we

have to choose a larger Θ̂∗ to design the SOF. Similar to the

MFB, the SOF has different detection powers for different

drop types Θ. Fig. 3c shows the detection power for different

drop velocities in our measurement range at different SNR

for a typical false alarm rate α = 0.01. As expected, drops

with lower velocity are easier to detect than faster drops.

Being aware ot this fact, the following procedure is essential:

Typically a distribution of all measured drop velocities is the

complete outcome from spray measurement systems. Know-

ing the detectability of different drop characteristics, allows

to adjust the overall measurement result. In particular the

amount of a specific drop velocity needs to be weighted by

its detectability.

5. CONCLUSION

We briefly described the concepts of the time shift technique

to measure drops in a spray. We provided a mathematical

framework that allows different concepts of detection. As a

matched filter bank exceeds the resources and space on the

FPGA, we reverted to a single filter. This filter is compared

with the matched filter bank in terms of detection power. We

showed that the single filter reaches a detection power that is

close to the one of a complete filter bank. Future research in-

volves the detection for a higher dimensional parameter vec-

tor Θ and the extension to distributed detection [20]. Com-

pressive sensing techniques may be considered to reduce the

huge amount of data [21], [22].
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[10] W. Schäfer and C. Tropea, “Time-shift technique for

simultaneous measurement of size, velocity, and relative

refractive index of transparent droplets or particles in a

flow,” Applied Optics, vol. 53, no. 4, pp. 588–597, 2013.
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