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ABSTRACT
It transpires that the irregularity in the structure of the iono-

spheric plasma plays a significant role on the ionospherically-

propagated HF signals. In this paper, special attention has

been paid to derive a simulator that can explicate the per-

turbed phase influence imposed by the ionosphere irregulari-

ties. This has been achieved by studying the space-time corre-

lation as well as statistics of the perturbed phases so that the

problem of perturbed phase simulation is recast as generat-

ing particular time series satisfying specific power spectrum

and statistical distribution. Eventually, three scenarios cor-

responding to different irregularity fluctuation conditions are

considered to verify the effectiveness of the proposed simula-

tor. It is shown numerically that the obtained perturbed phases

can agree well with the theoretical assumptions.

Index Terms— HF radar, ionospheric irregularities, mul-

tiple phase-screen method, zero memory nonlinear transform

1. INTRODUCTION

It is well known that the ionosphere constitutes the major re-

flection medium to permit the target detection over the hori-

zon in the HF radar systems, such as the HF skywave radar

and hybrid sky-surface wave radar [1]-[3]. However, the in-

volvement of ionosphere non-uniform random medium also

enhances the spectral complexity of the ocean echoes and

therefore degrades the performance of target discrimination

and clutter suppression.

The ionospheric irregularities captured as the density

structure within the ionospheric plasma would cause the

additional phase perturbations deteriorating the signal co-

herence during transit, which places a lower bound on the

precision of target angular and Doppler information, and to a

lesser extent range information. Intuitively, an understanding

of perturbation characteristics would be essential for improv-

ing the radar detection performance. Allowing for the past

research, several insightful results have been obtained and

thus improved this investigation to a large extent. Based upon

the approximation of geometric optics, Coleman [4] modelled
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the ionosphere as a combination of quiet and disturbed iono-

spheric conditions so that the scattered wave field expressed

by a linear integral of the refractive index could be divided

into two components representing the background ionosphere

and irregularity contributions. Based on this assumption, the

phase perturbation was evaluated by a first order Taylor series

to the total phase accrued during the propagation accord-

ing to the Fermat’s principle [5]. Afterwards the geometric

optics method was further developed by Kiang [6] with the

introduction of phase screens interpolated into the free space

to explain the random phase fluctuation. And the multiple

phase-screen method for the oblique incidence case was pro-

posed by Wagen in [7]. Besides, to consider the diffractive

effects, Rytov [8] addressed this problem by expressing the

scattered wave field as a complex value so as to capture the

amplitude and phase effects in a straightforward way.

In this paper, the space-time correlation and statistical dis-

tribution of perturbed phases are firstly studied in section 2.

Based upon which, a simulator is afterwards derived to gen-

erate the specific time series to simulate the perturbed phases

obeying specific power spectrum and statistical property. In

section 3, the validity of the proposed method is verified by

accommodating to several particular situations. Eventually, a

brief summary is given in section 4.

2. ANALYSIS OF IONOSPHERIC PERTURBED
PHASES IN SPACE-TIME CORRELATION AND

STATISTICAL DISTRIBUTION

Herein, of particular interests are the perturbed phase influ-

ence imposed by the ionosphere irregularities. Given that

such perturbation is varying both in space and time, the s-

tochastic method appears to be a more appropriate alterna-

tive. In the following, we will study the space-time correla-

tion and statistical property of the ionosphere perturbed phas-

es through theoretical derivation and simulation tests.

2.1. Autocorrelation Analysis of the Perturbed Phases in
Space and Time

In general, we consider a Cartesian system of coordinates,

with x east, y north and z vertical. Following [4],[9], the total
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ionosphere electron density n is reckoned as the combination

of the quiescent background part n0 and an irregular part n1,

namely n = n0 + n1. And the accumulated phase involving

the irregularity influence can be evaluated by

ϕ1 (x, y) = −reλ

∫ zt

0

n1 (x, y, z)√
1− z/zt

dz (1)

Where re is the classical electron radius (2.8 × 10−15 m). λ
is the radar wave length. zt is the height corresponding to the

reflection and zt = 0 indicates the bottom of the ionosphere.

Invoking (1), the spatial autocorrelation over the horizon

plane (x, y) can be estimated by the ensemble average of ϕ1

Rϕ1 (X,Y ) = 〈ϕ1 (x+X, y + Y )ϕ∗
1(x, y)〉

= (reλ)
2
∫ zt

0

∫ zt

0

Rn1

(
X,Y, z − z

′
)

√
(1− z/zt) (1− z′/zt)

dzdz
′ (2)

To calculate Rϕ1 , we carry on the following derivation.

Firstly, we let u =
(
z − z

′
)
/zt and v =

(
z + z

′
)
/zt

so that the Jacobian determinant is J (u, v) =
∂
(
z,z

′)

∂(u,v) =

1/

∣∣∣∣
∂u
∂z

∂u
∂z′

∂v
∂z

∂v
∂z′

∣∣∣∣ = z2
t

2 . Therefore, (2) can be reduced into

Rϕ1 (X,Y ) = (reλzt)
2

4

· ∫ 1

−1
Rn1 (X,Y, ztu)

[∫ −|u|+2

|u|
2√

(2−v)2−u2
dv

]
du

(3)

Considering the ϕ1-integral in the bracket of (3), notated as

Iϕ1 , the significant integrand contribution is merely along the

strip z ≈ z
′

(i.e. u ≈ 0) so that Iϕ1 can be estimated by

Iϕ1 =
∫ −|u|+2

|u|
2√

(2−v)2−u2
dv ≈ lim

u→0
Iϕ1 = 2 ln 4

|u| =

2 (ln 4− ln |u|) ≈ 2 ln 1
|u| . In conjunction with the integrand

result and the new definition of Z = ztu, (3) is thus deter-

mined by

Rϕ1 (X,Y ) =
(reλzt)

2

2

∫ 1

−1

Rn1 (X,Y, Z) ln
1

|u|du

=
zt(reλ)

2

2

∫ ∞

−∞
Rn1 (X,Y, Z) ln

zt
|Z|μ (zt − |Z|)dZ

(4)

Where μ (·) is the unit step function. To distinguish the hori-

zon wave number components corresponding to the perturbed

phase spectrum from that of the propagating wave packet,

κκκ = (κx, κy) is notated and the fluctuation phase spectrum

can be yielded by two dimension Fourier transform on (X,Y )

Sϕ1 (κx, κy) =
zt(reλ)

2

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Rn1 (X,Y, Z)

· ln zt
|Z|μ (zt − |Z|) e−jκxX−jκyY dXdY dZ

=
(λrezt)

2

2

{
1

2π
Sn1 (κx, κy, κz)

κz∗ 2

κzzt
Si (κzzt)

}∣∣∣∣
κz=0

≈ (λrezt)
2

2π
Sn1 (κx, κy, κz = 0)

(5)

Where κz-star indicates the convolution conducted on κz co-

ordinate. As for Sn1 itself, the widely used spectrum follow-

ing the Shkarofsky spectrum [10] is considered herein. Ob-

viously, Rϕ1 can be estimated by taking the inverse Fourier

transform implementation of (5). And in lieu of a direct mea-

surement of correlation, the complex signal amplitude con-

taining the perturbed phases expressed by (6) is exploited to

calculate the autocorrelation function

RAc
(X,Y ) =

〈
e−jϕ1(x,y)+jϕ1(x+X,y+Y )

〉

= eRϕ1 (X,Y )−〈ϕ2
1〉

(6)

From (4) to (5), (6) is reasonable to be simplified as

RAc (ρc) ≈ 1 +
〈
ϕ2
1

〉 κ2
0ρ

2
c

π
ln

κ0ρc
2

(7)

In (7),
〈
ϕ2
1

〉
represents the mean-square phase fluctuation, κ0

is the ionosphere outer scale parameter and ρc indicates the

correlation scale in space. In what follows, the analysis of

the temporal correlation is made by taking the inverse Fourier

transform of the δ-function-inserted perturbation phase spec-

trum at (X,Y ) = 0 in (8)

Rϕ1 (X = 0, Y = 0, T ) =

1

(2π)
3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Sϕ1 (κκκ,Ω)e

−jΩT dκxdκydΩ
(8)

Wherein Sϕ1 (κκκ,Ω) = Sϕ1 (κκκ) δ (|Ω| − κ⊥νd), κ⊥ is the

magnitude of the component of the density irregularity wave

number perpendicular to the earth’s magnetic field. After a

similar manipulation in (6), the temporal autocorrelation can

be finally determined by (9)

RAc(Tc) =
〈
e−jϕ1(x,y,T )+jϕ1(x,y,T+Tc)

〉

≈ 1− 〈
ϕ2
1

〉
κ2
0v

2
dT

2
c /2

(9)

Where vd is the plasma drift velocity. Tc indicates the corre-

lation scale in time.

Together with (7), we have addressed the determination of

the space-time correlation, which is primarily dependent on

the outer scale length of the plasma density irregularities, the

plasma drift velocity and the mean square phase fluctuation

magnitude. And such intrinsic dependency can also find its

verification in our subsequent simulation tests.
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2.2. Statistical Distribution Analysis Based on Multiple
Phase-Screen Method

Previously, our attention has been captured to measure the

space-time correlation of ionosphere perturbed phases. After-

wards, the statistical distribution of which will be discussed.

To this end, we firstly denote χc (ρl) as a space-time

sampling of signal wavefront at the horizontal scale. Asso-

ciated with the multiple phase-screen method proposed in

[6],[7], the fluctuation process of χc (ρl) can be simulated

by solving a differential equation above and below these

phase subscreens once propagating through the plane strati-

fied ionosphere structure containing irregularities. According

to the multiple phase-screen technique, several random phase

screens are placed in the ionosphere and therefore the plane

stratified ionosphere structure with a thickness of zt can be

divided by M thin phase screen intervals with the size of

Δz = zt/M . Then the height of the each interval is yielded

by zi = i ·Δz (i = 0, 1, 2, · · · ,M). To proceed, we assume

that the horizontal scale of each phase screen is Lh and is

divided into L partitions where the random phase changes at

ρl = l ·Δρ (l = −L/2, · · · , L/2− 1) can be represented by

ψi (ρl) =

L/2−1∑
s=−L/2

√
Sϕ1i−1,i

(sΔκ)Δκ cos

(
2πls

L
+ ϕs

)

(10)

Where Δρ = Lh/L, Δκ = 2π/Lh, ϕs ∈ [0, 2π] is as-

sumed as uniform distribution and the power spectrum for the

phase distortions on the screen from zi−1 to zi is given by

Sϕ1i−1,i
(κx, κy, κz) =

πκ2
e

2

[
(1− a)

2
zt ln

(
zt − zi−1

zt − zi

)

−z2i − z2i−1

2zt
− (1− 2a)Δz

]
Sn1 (κx, κy, κz)

(11)

In (11), a, κe are the modification factor for the case of

oblique incidence (cf. (18), (58) in [7]). Combining (10)

and (11), the total accrued phase variation of one space-time

sampling at each phase screen in the horizontal scale after

travelling through the M phase screens can be calculated ap-

proximately by the discrete summation instead of continuous

integral χc (ρl) =
M∑
i=0

ψi (ρl). To investigate the statistical

distribution of χc (ρl), the histogram test will be undertaken

in our subsequent simulations.

2.3. Space-time Autocorrelation Simulation and Statisti-
cal Distribution Test

Without loss of generality, we restrict our simulations to three

scenarios corresponding to different fluctuation states of iono-

sphere irregularities. The correlation coefficient is assumed

as 0.5. And other relevant parameters are recorded in Table 1,

where σn1 is the fluctuation variance indicating the strength of

irregular distortions, Ne is the peak ionosphere density, zb is

the distance between the bottom of ionosphere and the ground

and θe is the angle of incidence.

Table 1. Simulation parameters corresponding to different

ionosphere irregular states.

Ionosphere

parameters
Case 1 Case 2 Case 3

σn1 0.8× 10−3 1× 10−3 1.2× 10−3

Ne(m
−3) 2× 1011 4× 1011 5× 1011

θe(degree) 60 50 40
νd(m/s) 50 70 100
zt(km) 19 60 120
zb(km) 85 125 200

As illustrated in Fig.1(a)∼(c) (at the top of next page), the

spatial correlation distance normally ranges from hundreds of

meters to several kilometers with the correlation time of tens

of seconds which are largely constrained by the outer scale

of irregularity length and operating frequencies. The spatial

correlation mainly restricts the azimuth resolving capabilities

and hence determines the estimation accuracy of angle of ar-

rival. Such influence can be modelled as the covariance ma-

trix taper (CMT) and has been well studied in [11]. Herein,

we mainly focus on the effects on Doppler spectrum qualities

imparted by the temporal correlation of ionosphere irregular-

ity. Using the Wiener-Khinchin theorem, this can be guaran-

teed by a selected power spectrum of the perturbed phases.

(a) (b)

(c)
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Fig. 2. Illustration of the ionosphere perturbed phases at each

phase screen and histogram test results of χc (ρl) where f0 =
12 MHz, M = 20 and the outer scale length L0 = 2.5km.
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Fig. 1. Correlation characteristics of ionospheric perturbed phases in space and time versus different ionospheric irregular

fluctuation conditions.

Commensurately, in concordance with the situations in

Table 1, the fluctuation magnitude of the perturbed phases

at each subscreen is simulated in Fig.2(a)∼(c). Apparently,

the fluctuation strength increases with the incidence depth. In

Fig.2(d), histogram tests are carried out to illustrate the distri-

bution of the perturbed phase magnitude. As noted, it follows

the Gaussian distribution with a standard variance σc ranging

from 0.1 to 0.6 corresponding to diverse ionosphere irregu-

lar states and the scope of which is generally assumed as the

range of phase scintillations from weak to strong.

3. CORRELATION-STATISTICS-BASED
SIMULATOR DERIVATION

As alluded to earlier, the power spectrum and statistics of the

perturbed phases have been theoretically studied. Associated

with the zero memory nonlinear (ZMNL) technique (cf. [12],

the principle of which is illustrated in Fig.3.), it is feasible

to generate our desired time series by making both subject

to some specific distributions. By doing this, the so called

correlation-statistics-based simulator is yielded to simulate

the perturbed phases triggered by the ionosphere irregulari-

ties.

Fig. 3. Principle of ZMNL to generate desired time series.

In Fig.4, the validity of the proposed method is verified

through the similar scenarios with Table 1, where the correla-

tion time is restricted to 10s, 50s and 100s respectively and

the perturbation variance is postulated to be the same as the

results in Fig.2(d). In particular, instead of using the theoret-

ical Shkarofsky spectrum [10], the Gaussian power spectrum

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Normalized frequency (Hz)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

N
or

m
al

iz
ed

 p
ow

er
 s

pe
ct

ru
m

 fu
nc

tio
n

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

Tc=1/σ0.5=100s

Tc=1/σ0.5=50s

Tc=1/σ0.5=10s

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Simulated perturbed phases (rad)

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n 
(P

D
F)

Case 1, σc=0.1

Case 2, σc=0.3

Case 3, σc=0.6

(b)

Fig. 4. Effectiveness verification of the proposed method.

is considered herein for their similarity as well as the expe-

dience to construct a deterministic relationship between the

correlation time Tc and standard variance σ0.5, where a sim-

ple reciprocal relationship between Tc and σ0.5 is presumed.

According to the simulation results illustrated in Fig.4, the

simulated ionospheric perturbed phases can agree well with

the assumed situations. Obviously, the obtained simulator

is capable of producing desirous random time series, obey-

ing the given correlation and statistical distribution indepen-

dently. And the generation of which would be very helpful

in understanding the echo spectral signatures after travelling

through the ionosphere non-uniform random medium.

4. CONCLUSIONS

In the present paper, the correlation-statistics-based simula-

tor is yielded to generate the perturbed phases triggered by

the ionospheric irregularities. The essence of the proposed

method is to guarantee the generated time series satisfying

specific power spectrum and statistical distribution, which can

be realized through the ZMNL technique. Eventually, simula-

tions are carried out to verify the effectiveness of the proposed

simulator. Intuitively, the attached perturbed phases involved

in the signal echoes scattered back from the ionosphere would

largely deteriorate the Doppler spectrum qualities. And a full

analysis of which is bound up to facilitate the enhancement of

resolving capacities in Doppler for HF radar systems.
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