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ABSTRACT 

 

This paper presents the real-time implementation and field 

testing of an app running on smartphones for classifying 

noise signals involving subband features and a random forest 

classifier. This app is compared to a previously developed 

app utilizing mel-frequency cepstral coefficients features 

and a Gaussian mixture model classifier. The real-time 

implementation has been carried out on both the Android 

and iOS smartphones. The field testing results indicate the 

superiority of this newly developed app over the previously 

developed app in terms of classification rates. 

 

Index Terms—Smartphone implementation, real-time 

background noise classification; noise classification for 

hearing devices; band-periodicity and band-entropy features; 

random forest classifier 

 

1. INTRODUCTION 

 

The problem of environmental background noise 

classification has been previously examined in many papers 

for various applications. Some example applications include 

classifying environmental sound signals in robotics [1], in 

smart homes for elderly people [2], and in automatic tagging 

of sound files [3]. In addition, noise classification has been 

utilized as part of speech enhancement or noise suppression 

pipelines for hearing aid and cochlear implant devices [4-6], 

where the speech enhancement parameters are adjusted 

depending on the environmental background noise.  
A typical environmental background noise classification 

algorithm consists of two major components: a feature 

extractor and a classifier. Signal features which have been 

previously considered for noise classification are many. The 

major ones include: mel-frequency cepstrum coefficients 

(MFCC), matching pursuit [7], zero crossing rate, centroid 

and roll-off point [8], spectral centroid, spectral spread, 

spectral flatness, spectral flux, change chirp rate spectrum, 

Hilbert envelope, local energy and discrete curvelet 

transform [9], harmonic ratio, upper limit of harmonicity, 

and audio fundamental frequency [10]. A combination of 

these features is often used to achieve a high classification 

rate [11].  

As far as classifiers are concerned, Hidden Markov 

Model (HMM), Gaussian Mixture Model (GMM), Support 

Vector Machine (SVM), neural networks, deep belief 

network, k-nearest neighbor classifiers have been utilized [7-

12] for noise classification. 
As discussed in [13], one issue that has not been 

adequately addressed is the real-time computation aspect of 

such features and classifiers. In [13], band-periodicity and 

band-entropy features and Random Forest (RF) classifier 

were used to achieve background noise classification for 

cochlear implants applications. It was shown that 

computationally efficient subband features along with an RF 

classifier (subband+RF) outperformed a previously 

developed MFCC and GMM (MFCC+GMM) approach [4, 

14].  
In this paper, a real-time implementation of the 

subband+RF noise classification is reported on both Android 

and iOS smartphones together with a performance 

comparison with the MFCC+GMM noise classification.  
The rest of the paper is organized as follows. An 

overview of our previously developed background noise 

classifier using subband features and random forest classifier 

is provided in Section 2. The steps taken towards the 

smartphone implementation of this classification approach 

are then reported in Section 3. Section 4 includes the results 

corresponding to both the offline analysis as well as the real-

time field testing. Finally, the conclusion is stated in Section 

5. 

 
2. OVERVIEW OF PREVIOUSLY DEVELOPED 

BACKGROUND NOISE CLASSIFICATION 

 

Although MFCC features have been extensively used in the 

literature for noise signal classification, it is found that they 

have limitations in realistic noise environments. That is why 

additional features are often used in addition to MFCC 

features to gain high classification rates. However, a 

practical problem that arises as a result of utilizing many 

features is the computational complexity associated with 

running a classification signal processing pipeline in real-

time on handheld devices, in particular on smartphones. In 

[13], subband features and a random forest (RF) classifier 

were used as an alternative to MFCC features and a GMM 

classifier that had been shown to be computationally suitable 
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to achieve real-time throughputs compared to many other 

approaches [4].  

As discussed in [13], subband features consist of band-

periodicity and band-entropy features. Band-periodicity 

features capture the periodicity aspect of noise signals whose 

characteristics remain more or less stationary over time; 

whereas band-entropy features capture the non-stationary 

characteristics of noise signals. Band-periodicity and band-

entropy features are computed from signal segments of 

duration S seconds. Each segment is divided into M 

overlapping frames of length N, with the m
th

 frame specified 

by },...1,|{: NnRxxF nnm  , where nx represents the n
th

 

sample in the frame. Assuming the sampling rate of Fs , the 

frequency range [0, 2/Fs ] is divided into B non-overlapping 

subbands. The cross-correlation between every two 

consecutive frames, that is mF and 1mF  in each band, is 

computed and the peak value of the cross-correlation is 

denoted by mbP , , where b and m represent the band and 

frame index, respectively. The band-periodicity feature in 

band b is then defined as [15]:  
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1
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       (1) 

where M is the total number of frames over duration S. 

The band-entropy feature in each band over duration S 

is defined as:  
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where mbH ,  represents the entropy of the m
th

 frame in band 

b. Considering B bands, a feature vector of 2×B components 

is thus used to capture the signal characteristics over a 

duration of S seconds. The extracted feature vector is then 

fed into an RF classifier to find a matched class to the 

incoming signal frames. It is worth noting that band-

periodicity and band-entropy features unlike the MFCC 

features are not sensitive to the sound loudness, thus they do 

not require any preprocessing normalization as part of their 

extraction. 

An RF classifier [16] is an ensemble of T number of 

classification trees. Each tree is trained independently from 

other trees using a randomly selected (with replacement) 

subset of a training set. At the start of the training, or at the 

root node, the entropy is high since all training samples from 

all the classes are used at this stage. Then, the tree is built in 

such a way that the entropy is decreased as layers are added 

until the tree reaches its leaves with the lowest entropy 

allowing classification of all the training data.  
MFCC features are widely used in speech processing. 

MFCC features attempt to capture the spectral information 

corresponding to the human auditory response. MFCC 

features are computed by grouping the short time Fourier 

transform coefficients of a frame into a set of L coefficients 

based on L mel-scale non-overlapping filters or filterbank, 

followed by a discrete cosine transform for decorrelation 

purposes. Normally, the first 13 coefficients are used to 

serve as MFCC features. Likewise, the Gaussian Mixture 

Model (GMM) classifier is extensively used for signal 

classification. In this classifier, the data or samples 

corresponding to a class is modeled by a mixture of several 

Gaussians in the feature space whose parameters are 

estimated using the iterative expectation-maximization 

algorithm.    
 

3. REAL-TIME IMPLEMENTATION ON 

SMARTPHONES 

 

The subband feature extraction and the random forest 

classifier were coded in C which were then integrated into 

the Android and iOS smartphones using the guidelines 

provided in the book “Smartphone-Based Real-Time Digital 

Signal Processing” [17]. The shell provided in the book was 

used for the microphone interfacing and the GUI. The 

software tools that were used to achieve the smartphone 

implementation are noted below: For Android smartphones, 

the IDE (Integrated Development Environment) of Android 

Studio was used together with the Android SDK (Software 

Development Kit) [18]. To support C codes within Android 

smartphones, the Android NDK (Native Development Kit) 

[19] was used. For the iOS implementation, the IDE of 

Xcode [20] was used. C codes were interfaced with 

Objective-C of iOS by importing the header file. Interested 

readers are referred to the above book for the details of 

embedding and running C codes within the Android and iOS 

environments. 

For feature extraction, signals were captured in frames 

of length 25msec with half a frame overlap, i.e. 12.5msec 

overlap. MFCC features were extracted from every frame 

and the extracted feature vector was fed into a GMM 

classifier. The implementation was done using 13 MFCC 

features with a mel-filter bank of 40 filters together with two 

Gaussians in the mixture model per class.  

Band-periodicity and band-entropy features were 

computed per signal segment of duration S =1 second. Each 

incoming frame was divided into B = 8 non-overlapping 

bands of width 1kHz in the frequency domain. Thus, a 

feature vector of 16 subband features (8 band-periodicity 

and 8 band-entropy features) was obtained over every 1 

second which was then fed into an RF classifier consisting of 

20 trees. 

Screen snapshots of the app on an Android smartphone 

are provided in Fig. 1. The user has the option to perform 

online classification of sound signals that are captured by the 

smartphone microphone or to save captured sound signals 

for later examination. The app allows adjusting the sampling 

rate, frame length, frame overlap amount, and decision 

buffer length (in frame unit) for majority voting 

classification. 
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Fig.1. Snapshots of the developed noise classification smartphone app 

 

TABLE III.  FIELD TESTING OF SUBBAND+RF 

             Detected class 

Actual class 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 80.4 0 19.6 

Car Driving 0.4 99 0.6 

Machinery 0 0 100 

 
TABLEI IV.  FIELD TESTING OF MFCC + GMM 

            Detected class 

Actual class 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 47.4 1.1 51.4 

Car Driving 1 99 0 

Machinery 0 0 100 

 

TABLE I. OFFLINE EVALUATION OF SUBBAND+RF-                                               

AVERGED OVER 100 DIFFERENT TRAINING AND TESTING 

            Detected class 

Actual class 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 98.9 0.1 1 

Car Driving 0 99.7 0.3 

Machinery 3.9 0.1 96 

 
TABLEI II. OFFLINE EVALUATION OF MFCC + GMM–                                           

AVERGED OVER 100 DIFFERENT TRAINING AND TESTING 

            Detected class 

Actual class 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 86.5 11.5 2 

Car Driving 3.3 95.6 1.1 

Machinery 2.1 0.9 97 

 

 

4. EXPERIMENTAL RESULTS AND COMPARISON 

 

The developed classification app was examined by 

considering three widely encountered noise types of babble, 

car driving and machinery. The examination was done in 

offline and field testing manners which are explained in 

more details in the subsection that follow.   
 

3.1. Dataset 

 

As part of the app development, a comprehensive dataset of 

120 sound files for the three noise types of babble, car 

driving and machinery were put together which is accessible 

for public use at the website noted in [21]. The machinery 

class contains noise signals of home appliances. For each 

noise type, 40 sound files of duration 30 seconds were 

collected at different times at a sampling frequency of 

16kHz using a Nexus 5 smartphone. For both the data 

collection and the real-time operation of the classifier, only 

one microphone of the smartphone was used.  

 

3.1. Offline evaluation and comparison 

 

The MFCC+GMM and subband+RF classification 

approaches were evaluated in an offline manner first as 

follows. The dataset was randomly divided into a training 

(80%) and a testing set (20%) with no overlap between 

them. This procedure was repeated 100 times. Each time the 

classifiers were trained using a different training and testing 

sets and the averaged results are indicated in Tables I and II. 

As can be noted from these tables, the subband+RF 

approach provided a higher overall classification rate 

compared to the MFCC+GMM approach, in particular for 

babble type of noise. This is attributed to the discriminatory 

power of subband features as compared to MFCC features as 

evident by computing the Fisher discriminant measure [22]: 

 

)( 1
bw SStraceJ          (3) 

 

where wS denotes the within-class scatter matrix and bS  the 

between-class scatter matrix. Higher J values indicate that 

samples in the multi-dimensional feature space are more 

separated. When using the subband features, this measure 

was found to be J=2350, while when using the MFCC 

features, this measure was found to be J=38, indicating a 

high level of spread or overlap between the babble class and 

the other two classes in the MFCC feature space.  

The next experimentation involved running the 

classifiers in real-time on actual smartphones in the field 

which is mentioned next.  
 

3.1. Actual field testing and comparison 

 

The developed classifier apps were run on smartphone 

platforms in the three noise environments to evaluate their 
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TABLE V. TREATMENT OF OTHER NOISE ENVIRONMENTS, SUBBAND+RF VS. MFCC+GMM  

 Subband + RF MFCC + GMM 

             Matched class 

Other classes 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Babble 

(%) 

Car Driving 

(%) 

Machinery 

(%) 

Crowded Restaurant 89.5 3.4 7.1 1 1 98 

Street 18.5 13.2 68.3 0 17.5 82.5 

Loud Indoor AC 0 16.3 83.7 98.9 1.1 0 

Washer 7.8 0.8 91.4 51.3 8.7 40 

Dryer 0 8.3 91.7 50.5 49.5 0 

Vacuum 0 0 100 0 0 100 

 

 

TABLE VI. AVERGED FRAME PROCESSING TIMES OF SUBBAND+RF MODEL (25 

MSEC FRAMES WITH HALF FRAME OVERLAP AT 16 KHZ SAMPLING FREQUENCY) 

Frame processing time in msec 
Subband feature 

extraction + RF classifier 

Android without using VFP  3.1ms 

Android with using VFP 1.5ms 

iOs without using VFP 3.4ms 

iOS with using VFP 3.1ms 

 

 

actual performance in the field. The outcome of this 
experimentation appears in Tables III and IV. Here it is 

worth pointing out that since microphones on different 

smartphones have different frequency responses, the data 

collection and thus training were repeated for each device to 

remove any frequency dependency on the device 

microphone. As noted form these tables, the MFCC+ GMM 

app and the subband+RF app performed similarly in the 

noise environments of car driving and machinery. However, 

in the babble environment, the subband+RF app by far 

outperformed the MFCC+GMM app.  

The reason for the poor performance of the 

MFCC+GMM app in the field was traced back to the 

sensitivity of MFCC features versus subband features. 

MFCC features were found to be quite sensitive to various 

variations that occur in babble type of noise environments in 

the field whereas the subband features were found to be 

much less sensitive to various variations that occur in babble 

type of noise environments. As a percentage, it was found 

that MFCC features exhibited a large variation of 173% in 

the field testing performed whereas subband features only 

exhibited a variation of 2% when encountered with 

variations of babble type of noise for which the classifiers 

had not been trained. 

Another study was conducted to assess the behavior of 

the apps in the presence of other noise types for which no 

training had been done. The outcome of this study appears in 

Table V. As seen from this table, these other noise types got 

matched to the closest class with similar sound 

characteristics when using the subband+RF app, while the 

MFCC +GMM app could not distinguish between the babble 

and machinery noise types. For example, the crowded 

restaurant with music in the background, which was not part 

of the training data, was classified as machinery noise type 

and the loud indoor air conditioning (AC) noise, which was 

not part of the training data, was classified as babble noise 

type.  
The average processing times per 25msec frames with a 

frame overlap of 12.5msec for the subband+RF 

classification on an Android platform (Nexus 5) and on an 

iOS platform (iPad Mini 2) are shown in Table VI. This time 

incorporates the i/o delay time associated with these devices. 

To achieve real-time throughputs, the total processing time 

needed to remain below 12.5msec for no frame to get 

skipped. When using the Vector Floating-Point (VFP) 

coprocessor hardware on the smartphones, the timings 

naturally improved. The table lists the timings with and 

without using VFP. In all the cases, real-time throughputs 

were achieved. A video clip of the subband+RF 

classification app can be viewed at the link stated in [23].  

 

5. CONCLUSION 

 

This paper has provided an app for carrying out background 

noise classification in real-time on smartphone platforms. 

Two classification approaches having low computational 

complexity which allowed them to be run in real-time on 

smartphone platforms, namely MFCC+GMM and 

subband+RF, were implemented and compared in the field. 

The extensive experimentations carried out have shown that 

the subband+RF approach provides both real-time 

throughputs and high classification performance for the three 

commonly encountered noise environments of babble, car 

driving and machinery.  
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