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ABSTRACT
Here we examine the problem of rumor source identifi-

cation in star networks. We assume the SI model for rumor
propagation with exponential waiting times. We consider the
case where a rumor originates from a single source, and find
an explicit, non-iterative, maximum likelihood estimate for
the source given the observed infection pattern. The theoret-
ical derivation is supported by computational data. We con-
trast this estimator with the “rumor center” estimator of Shah
and Zaman. Unlike rumor centrality, our ML estimator ad-
mits the possibility of more than two equiprobable maxima
for a given infection pattern, and while a unique rumor center
is always equivalent to the distance center, we show that this
is not the case for our ML estimator.

Index Terms— Infection source identification, SI model,
star network, rumor source identification, maximum likeli-
hood

1. INTRODUCTION

Rumor propagation and source detection problems (and their
mathematical analogs) arise in a variety of contexts, including
cybersecurity, information assurance, privacy, epidemiology,
and social network analysis. We consider the problem of es-
timating the source of a rumor that spreads in a star network.
Given a snapshot of the infected region at a given point in
time, we wish to characterize the maximum likelihood esti-
mate of the source of the rumor.

A true ML estimator is very difficult to produce for gen-
eral graphs. Accordingly, it is necessary either to restrict the
classes of graphs of interest, or to use an approximation to the
ML estimator. In this paper, we will consider a specific topol-
ogy (the star), but attempt to characterize it more precisely
than most of the approaches discussed below.

Similar problems and approaches have been considered
previously. In [1], the authors present the problem of ML esti-
mation of a single source of a rumor which propagates accord-
ing to the SI model. They propose a metric known as “rumor
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centrality”, and show that it is an ML estimator for regular
trees. When generalized beyond regular trees, the computa-
tion of the original metric becomes intractable, so a breadth-
first search-based heuristic is incorporated into the metric for
non-regular trees, which provides asymptotically good results
for many cases.

In [2] and [3], the authors consider approaches to more
complex propagation models (SIS and SIRI, respectively), but
since they are iterative in nature, and operate on individual in-
stances of the problem (rather than our general, closed-form
solution), they do not lend themselves to the types of charac-
terizations we offer here.

In [4], the authors consider the problem of multiple
sources in a tree under the SIR model, and where the in-
fection process occurs in discrete time. Their method is
applied to regular trees of degree greater than two, whereas
our trees are irregular, and almost all nodes are of degree two.

Our approach builds upon the work in [5], but expands the
development from a line graph to a star topology.

Other current work in this area includes [6], which looks
at this problem from the opposite side — trying to conceal the
source of the rumor by manipulating the propagation model.
This type of approach could be used to provide anonymity for
whistle-blowers or political dissidents, for example.

2. MODEL

For present purposes, we define a star network as a point O,
along with m “arms” of nodes proceeding outward from O.
The nodes of each arm will be numbered starting with 1 (for
the node adjacent to O) and increasing from there. We use
the SI infection model with edge-based propagation in con-
tinuous time to describe the spreading of the rumor. That is,
nodes are either “susceptible” (have not yet heard the rumor)
or “infected” (have already heard it). If a susceptible node
shares an edge with an infected neighbor, then the infection
will “traverse” that edge and infect the susceptible node with
a waiting time that is exponentially distributed with mean T .
Once infected, a node remains that way indefinitely. An im-
portant consequence of this model is that we can invoke the
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Fig. 1. A sample infection on a star network for m = 5.

memoryless property of the system to state that at any given
time, the next infection is equally likely to occur along any
outgoing edge from the current infected set. For a given ob-
served infection pattern (the subgraph of infected nodes at
some point in time), we wish to find the maximum likelihood
estimate of the source giving rise to that infection pattern.

Our infection pattern consists of O, along with the closest
ki nodes along each arm i. If the infection were confined to
a single arm, we could simply consider the problem on a line
graph, and the ML solution is well-known to be the midpoint
of the infection (in fact, for a uniform prior, the likelihood
function follows a binomial distribution on the infected nodes
[1], [5]). Since the infection arises from a single source, it
must be contiguous, so any infection which spans multiple
arms must also include O. This is illustrated in Fig. 1.

3. ANALYSIS

Accordingly, we start by computing the likelihood of the ob-
served pattern occurring at some point in time given that the
rumor originated at O. In this case, each subsequent infection
can spread along each of the m arms with probability 1/m.
Let K =

∑m
i=1 ki. Then the probability of observing k1 in-

fections along arm 1, k2 infections along arm 2, etc. is given
by a multinomial distribution.

P (O; k1, k2, . . . , km) =
K!

k1!k2! . . . km!mK
(1)

If instead, the rumor source is located along one of the arms
(let us assume, without loss of generality, that the source is lo-
cated on arm 1) at node l. Then the propagation of the rumor
occurs in two phases: At first, the infection spreads along arm
1 in either direction, until the inward propagation reaches O.
At that point, it can spread outward along any of the m arms.
Accordingly, we decompose the set of possibilities according
to the extent that the infection proceeds outward along arm 1
before the inward propagation reaches O. Suppose the infec-
tion reaches an additional r nodes beyond l before reaching

Fig. 2. Illustrating the calculation in (3). Note that r can range
from 0 up to k1 − l.

O, as shown in Fig. 2. Then the probability of r outward in-
fections and l − 1 inward infections (in any order) followed

the last inward infection reaching O is

(
r+l−1
l−1

)
2r+l

. Afterwards,
the probability of fulfilling the remaining infections exactly
can be computed using (1), replacing k1 with k1 − (r + l).
Multiplying these two probabilities, we obtain

P (l, r; k1, k2, . . . , km)

=

(
r+l−1
l−1

)
2r+l

(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l)

=
(r + l − 1)!

r!(l − 1)!2r+l
(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l) . (2)

Summing over all possible values of r, we obtain

P (l; k1, k2, . . . , km)

=

k1−l∑
r=0

(
r+l−1
l−1

)
2r+l

(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l)

=

k1−l∑
r=0

(r + l − 1)!

r!(l − 1)!2r+l
(K − (r + l))!

(k1 − (r + l))!k2! . . . km!mK−(r+l) .

(3)

In order to further analyze the situation, we will use the
method of types. For a source with a uniform distribution on
X , the probability of observing a type T of n samples with
empirical distribution Q satisfies

1

(n+ 1)|χ|
2−nD(Q||UX) ≤ P (Tn(Q)) ≤ 2−nD(Q||UX) (4)

where |χ| is the size of the set of choices [7]. Note that the
lower and upper bounds are the same except for the leading
term in the lower bound. Therefore, we will work with the
upper bound for now, and consider the effect of the leading
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term in the lower bound afterwards.

P (Tn(Q)) ≤2−nD(Q||UX) = 2−n(log |X|−H(Q))

=2−n(log |X|+
∑

X Q(x) logQ(x)). (5)

Applying this to each of the phases of the infection yields

P (l; k1, k2, . . . , km) =

k1−l∑
r=0

[2−(r+l)(1−H( r
r+l ,

l
r+l ))∗

2−(K−(r+l))(logm−H(
k1−(r+l)

K−(r+l)
,

k2
K−(r+l)

,..., km
K−(r+l)

))] (6)

Remember that we are interested in finding the value of l
that maximizes this expression, and observe that the value
of the sum is asymptotically dominated by the term with the
largest (or least negative) exponent. Furthermore, notice that
the terms of the sum depend only on r + l rather than r or
l individually, with the exception of the H( r

r+l ,
l
r+l ) in the

first exponent. This value is maximized when r = l. There-
fore, we can conclude that the dominant term of the sum for
the maximizing value of l occurs when r = l. If this were
not the case, we could replace r with r′ and l with l′, where
r′ = l′ = r+l

2 and obtain a more dominant term with a dif-
ferent value of l. Accordingly, we will replace r with l going
forward, and in the process, we eliminate the first part of the
dominant term.

P (l; k1, k2, .., km) ≤ 2−(K−2l)(logm−H(
k1−2l
K−2l ,

k2
K−2l ,...,

km
K−2l ))

(7)

≤ 2−(K−2l) logm+(K−2l)H(
k1−2l
K−2l ,

k2
K−2l ,...,

km
K−2l )

≤ 2−(K−2l) logm−(K−2l)(
k1−2l
K−2l log

k1−2l
K−2l +

∑m
i=2

ki
K−2l log

ki
K−2l )

≤ 2−(K−2l) logm−(k1−2l) log
k1−2l
K−2l −

∑m
i=2 ki log

ki
K−2l (8)

Taking the exponent, and setting the derivative with respect to
l to zero, we obtain

0 = 2 logm+ 2 log (k1 − 2l)+2− 2 log (K − 2l)−2

which leads to

l =
k1 −

∑m
i=2 ki
m− 1
2

(9)

In other words, l is chosen so that the remaining length of
arm 1 once O is reached is equal to the arithmetic mean of
the other arms. Since we can apply this reasoning to any arm,
we have a local maximum for any arm whose length is above
average. However, the form of the exact solution in (3) makes
it clear that the global maximum is attained when the longest
arm is chosen to be arm 1. Let us denote this choice of l as l∗.

Having chosen l∗ to optimize the upper bound, let us con-
sider the effect of the leading coefficient in the lower bound.

While it is different for each term of the sum in (6), it can

be bounded from below by
1

(K + 1)m
. We can then use our

earlier reasoning with (7) to show that

P (l; k1, k2, . . . , km)

≥ 1

(K + 1)m
2−(K−2l)(logm−H(

k1−2l
K−2l ,

k2
K−2l ,...,

km
K−2l )). (10)

Consider what happens if we allow the pattern to grow larger,
but maintain the relative sizes of the k’s (in other words, re-
place each k by nk, and let n go to infinity). Then we have

P (l;nk1, nk2, . . . , nkm)

≤ 2−(nK−2l)(logm−H(
nk1−2l
nK−2l ,

nk2
nK−2l ,...,

nkm
nK−2l )) (11)

and

P (l;nk1, nk2, . . . , nkm)

≥ 1

(nK + 1)m
2−(nK−2l)(logm−H(

nk1−2l
nK−2l ,

nk2
nK−2l ,...,

nkm
nK−2l )).

(12)

Remember that l∗ was chosen (proportional to the k’s) in such
a way as to minimize the (negated) exponent in (8). There-
fore, letting l = nl∗ will yield the minimum exponent in
(11) and (12) (n times the old optimal exponent). If, instead,
we were to choose l = l′ 6= nl∗ (relative to the k’s), then
the higher (negated) exponent will eventually cause the upper
bound in (11) evaluated at l′ to drop below the lower bound
in (12) evaluated at l∗. Therefore, for sufficiently large in-
stances, our choice of l = l∗ must be optimal. In fact, our
empirical results suggest that this is the case even for smaller
instances.

4. PROPERTIES AND CONTRAST WITH RUMOR
CENTRALITY

In order to most easily see contrasts with rumor centrality, let
us consider a special case of a star network. Based on the vi-
sual similarity to a biological structure, let us define a neuron
as a region of a star network that includes O, and whose arms
only take on two distinct lengths. The shorter arms, called
dendrites, have length L0, while the longer arms, called ax-
ons, have length L0 + L1, and we stipulate that both L0 and
L1 are strictly greater than 0. This is illustrated in Fig. 3.

Suppose our infection pattern is a neuron that has a single
axon. If there is only a single dendrite as well (meaning m =
2), then effectively this is the same as a line graph of length
2L0 +L1. In this case, the distance center and the ML center
would both be located on the axon at node L1/2.

Now, consider what happens if the number of dendrites
(and the corresponding m) increases. (Note that this differ-
ent than choosing a larger m to begin with and allowing the
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Fig. 3. A neuron with two axons and five dendrites.

“extra” arms to have length 0 at the outset.) The ML center re-
mains at 2L0 +L1, because the second term in the numerator
of (9) remains constant. However, the distance center would
begin to move towards O, and eventually reach it and stay
there. Thus, the ML center and the distance center will no
longer be the same. In contrast, [1] tells us that the distance
center and rumor center are the same if the latter is unique, so
we know that the ML center (which is unique in this case) and
the rumor center cannot be equivalent. (This is not inconsis-
tent with the findings in [1], since they do not claim the rumor
center to be optimal in the ML sense under these conditions,
but we have identified a fairly simple yet clear example where
these two centers may differ significantly.) To illustrate a sec-
ond significant difference between these two centrality mea-
sures, consider a neuron with n dendrites and n + 1 axons,
where n > 2. It can be easily shown that the (unique) rumor
center in this case is at O (otherwise there would be at least n
equivalent rumor centers by symmetry, while [1] guarantees
us that a tree can have at most 2 rumor centers). However, (9)
tells us that there are n+ 1 equiprobable ML centers, located
at node L1/4 on each of the axons.

5. COMPUTATIONAL RESULTS

Since the derivation in section 3 relies on large deviation the-
ory, we include some computational results in Table 1. These
results were derived using the exact combinatorial expression
in (3), not the subsequent approximations.

The early examples show how the results scale for differ-
ent sized regions with the same proportions, and show that
the formula for the ML estimator in (9) works exactly, even
for very small cases (despite the fact that we used large de-
viation methods to derive it). The later ones show the results
to hold for larger m and more diverse arm lengths. We com-
puted even more varied examples, but space does not permit
including them here. However, all of them agree with (9) ex-
actly.

Table 1. Computational results for several examples.
m Arm Lengths ML Estimate (Assume Arm 1)

3 4, 2, 2 1
3 20, 10, 10 5
3 200, 100, 100 50

3 40, 40, 20 5 (Arms 1 & 2)
3 200, 200,100 25 (Arms 1 & 2)

3 20, 20, 0 5 (Arms 1 & 2)
3 100, 100, 0 25 (Arms 1& 2)

3 300, 200, 100 75

3 5, 1, 1 2
3 50, 10, 10 20
3 500, 100, 100 200
4 500, 100, 100, 100 200
5 500, 100, 100, 100, 100 200

5 500, 500, 100, 100, 100 150 (Arms 1 & 2)
5 160, 120, 80, 0, 0 55
5 1000, 800, 600, 400, 200 250

6. CONCLUSIONS

A true maximum likelihood estimator is very difficult to pro-
duce for general graphs. Accordingly, it is necessary either to
restrict the classes of graphs of interest, or to use an approx-
imation to the ML estimator. The rumor centrality measure
of [1] is indeed ML for regular trees, and performs well for
many cases of non-regular trees. We set out to investigate a
relatively simple class of non-regular trees with different con-
ditions (geometric trees with sources of degree 2). We were
able to derive an expression for the ML estimator, prove it for
large networks (which are our primary interest), and empir-
ically demonstrate it for smaller cases. We also showed that
unlike the rumor center, there can be more than two equiprob-
able ML centers, and that the ML center need not coincide
with the distance center.
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